
Chapter 1 - Introduction to
Numerical Computing and Matlab

Raymond J. Spiteri

Lecture Notes for Math 211:
Numerical Analysis 1

(Introductory Numerical Analysis)

University of Saskatchewan

January, 2013

1.1 Motivation for the Course

This course is about numerical analysis.

The associated computations are done using Matlab.

• Numerical analysis is concerned with the solution of
mathematically formulated problems via computer.

• It is what you do when you can’t solve a
mathematically formulated problem with pencil and
paper alone.

• Numerical computing is being done all around us.
(“We all use math everyday.”)

• The problems themselves can come from many fields
of application, e.g., biology, chemistry, physics,
engineering, medicine, education, entertainment,
the internet, forensics, financial markets, . . .

• The stakes are often high, so the results must be
accurate, reliable, and robust.

1

What is Matlab?

• Matlab = Matrix laboratory

• Matlab is a problem-solving environment (PSE).

• PSEs are meant to allow the student / researcher
to focus on the numerical analysis more than the
details of computer programming.

• It was developed by Cleve Moler in the 1970s as a
teaching tool.

• Today it is used almost everywhere, from universities
to government research labs to industry.

We will learn about these things mostly by example.

Numerical analysis is not a spectator sport! You
are strongly encouraged to experiment with the demo
programs until you get a feel for what is happening!

2

Why Matlab?

• It is powerful and yet relatively easy to learn.

• Knowledge of the use of Matlab is a marketable
skill. (It is also a necessary skill for many jobs!)

Multiplying two matrices A ∈ <l×m and B ∈ <m×n

to get a matrix C ∈ <l×n using FORTRAN:

DO 10 I=1,L

DO 20 J=1,N

C(I,J) = 0

DO 30 K=1,M

C(I,J) = C(I,J) + A(I,M)*B(M,J)

30 CONTINUE

20 CONTINUE

10 CONTINUE

(This does not include variable declarations, etc.)

In Matlab:

C=A*B;

3

Poor computing: cost and opportunity

• A report from 2002 estimated that software bugs
cost the U.S. economy $60B each year, $22B of
which could be eliminated by improved practices.

• A recent article estimates that finding and fixing
bugs costs the global economy $312B annually.

• Computer system errors are usually rooted in human
error, not shortcomings in technology.

• In this course, we will learn some basic concepts
related to understanding the kinds of problems
that can occur in numerical computing as well as
obtaining insight into how to obtain accurate and
reliable results from a computer.

• You can easily imagine that this kind of training is
very valuable to potential employers / customers.

4

http://www.businessweekly.co.uk/hi-tech/14898-software-bugs-cost-more-than-double-eurozone-bailout

Some infamous software bugs

• Mariner 1, July 22, 1962

The Mariner 1 spacecraft had to be destroyed 294.5s
after launch due to a missing overbar: Ṙn was used

instead of ¯̇Rn; i.e., the measured value of the rate
of change of radius R at time tn was used instead
of its smoothed (time-averaged) value.

• The first computer worm, November 2, 1988

While a computer science graduate student at
Cornell University, Robert Tappan Morris made
a coding error that unwittingly released the first
computer worm, disabling around 10% of the
computers on the Internet. Morris was fined $10,000
for his mistake, the first person convicted under the
1986 Computer Fraud and Abuse Act (US). He is
now a professor at MIT.

5

Disasters caused by poor numerical
computing

Here are some examples of real life disasters that
occurred because of poor computing practices (and
not because of programming errors per se).

• Vancouver Stock Exchange “Crash”, 1982

The index calculation always truncated the updated
value to 3 decimal places after each transaction.
After 22 months, the index went from its starting
value of 1000.000 to 524.881 when it should have
been at 1098.892.

• CSI: Round-off error (aka Salami attacks)

Hackers diverted round-off errors from normal bank
calculations to their own accounts, netting them
substantial sums of money over time.

6

• Patriot missile failure, February 25, 1991

A Scud missile killed 28 soldiers in Dhahran, Saudi
Arabia, when the Patriot missile meant to intercept
it miscalculated the Scud’s position. The error
came from an integer to floating-point conversion
of 9.5 × 10−8 per tenth of a second multiplied by
the product of the up-time of the Patriot (100
hours) and the velocity of the Scud (1676 metres
per second); i.e., 573 metres.

• Mars Climate Orbiter crash, September 23, 1999

A subcontractor failed to respect the specification
that SI units be used instead of Imperial units.
The Orbiter overshot its orbit and crashed into the
Martian surface, putting a swift and disappointing
end to a $655M investment.

• Y2K, January 1, 2000

Almost $300B was spent worldwide from 1995
to 2000 to keep systems from miscalculation all
because people did not use 4 digits to store the
year. A further $21B were lost to outages.

7

• Toyota hybrid vehicle recall, February 8, 2010

Toyota recalled more than 400,000 hybrid vehicles
in 2010 because the software that controlled the
anti-lock brakes was not responsive enough in
regenerating braking after hitting a bump. This
software glitch cost Toyota an estimated $3B.

• Knight Capital, August 1, 2012

One incorrect line of code caused Knight Capital
to lose $440M in about 30 minutes. This amount
represents 3–4 times the amount of money made by
the company in the previous year. The most likely
cause is the common “rush to production” scenario
in which proper testing is foregone in the name
of expediency. The company is now struggling to
remain solvent.

8

A Matlab Tutorial

See intro.m

See also deckShuffling.m, perfectShuffle.m

9

1.2 Floating-Point Arithmetic

A basic understanding of floating-point arithmetic is
essential when solving problems numerically. This
is because certain things happen in a floating-point
environment that might surprise you if you have no
appreciation for them.

The reason we have to study floating-point arithmetic
at all is because of how numbers are stored and
operated on in a computer.

In everyday life, we are used to dealing with integers
and numbers that have 1 or 2 decimal places. We
generally don’t even like fractions.

But in science it does not take long before we
encounter concepts like irrational numbers (e.g.,

√
2),

transcendental numbers (e.g., π), infinity (∞), and
infinitesimals (arbitrarily small numbers).

On the other hand, a computer can only allocate a
finite amount of memory to store any number, and it
only has a finite amount of memory in total.

10

So we must work with a finite number of digits
for a finite number of numbers!

These facts quickly lead to the phenomena of

• round-off error : not all numbers can be stored
exactly; they must be rounded off so that it can be
represented by the computer,

• overflow : when a number is larger than the largest
number that can be represented (results in Inf),

• underflow : when a number has a smaller magnitude
than the smallest that can be represented (number
is usually set to 0).

We are able to study floating-point arithmetic in a
systematic way because in 1985 it was agreed that
all computers adopt the IEEE convention for floating-
point arithmetic.

11

Before then, every computer could (and often did!)
have its own brand of floating-point arithmetic!

This allows us to study floating-point arithmetic
without referring to a specific computer.

Note 1. This does not mean every computer will
give the same answer to the same sets of floating-
point operations!

There is still some room for interpretation, even in the
IEEE standard!

By default, Matlab uses the IEEE double-precision
format for its floating-point operations.

When double precision does not suffice, there is also
quadruple precision (but not in Matlab).

Software also exists that perform calculations in
multiple (arbitrary) precision; e.g., in Maple by using
the Digits command or in Matlab using the vpa

function from the Symbolic Math Toolbox.

12

We use numbers without thinking

We are so used to using numbers that we usually do
so without thinking.

However, some thought about how we use numbers
can add a lot of insight into how computers use them.

Historical Notes: The Sumerian1 number system,
the first known number system that existed in written
form, used the (main) base 60 (well before 3000 BC).

The Aztec civilization (1300–1500 AD), like all other
South and Central American civilizations, used the
main base 20.

The sexagesimal system of Sumer was displaced by the
decimal system of Egypt. Both were invented around
the same time.

Base 5 was used by the Api people from Vanuatu in
the South Pacific.

1Sumer was a city in Mesopotamia.

13

We use base 10 for our number system.

So for example the number 123.456 means

1×102+2×101+3×100+4×10−1+5×10−2+6×10−3.

We have also a scientific notation that normalizes each
number so that the decimal place always appears in
the same place.

(We will assume this is after the first significant digit.)

So instead of writing 123.456, 12.3456× 101, etc., we
agree to write this number using scientific notation as

1.23456× 102.

14

Thus any number is expressible in the form

±d1.d2d3 . . .× 10e,

where each digit di satisfies 0 ≤ di ≤ 9, i = 1, 2, . . .,
and d1 6= 0; e is called the exponent and in the real
number system can be any integer.

Of course, some numbers are not expressible as a finite
decimal expansion in base 10; e.g.,

1

3
=

3

10
+

3

102
+

3

103
+

If we terminate this expansion after any finite number
of digits, we will be making a round-off error.

In general, if we terminate the expansion of any number
at any point before it is complete, we will be making a
round-off error.

Thus, if we can only store a fixed number of digits, not
every number will be representable exactly.

15

For example, if we can store 3 digits, then 2.17 is
exactly representable, but 2.1415 must be represented
approximately, e.g., by 2.14.

Note that when we do computations with such
numbers, intermediate results must be rounded at
each step.

This means that exactly how you perform a
computation may matter!

For example, in 5-digit arithmetic,

25.874 + 37654− 37679 = 37680− 37679 = 1.0000,

but

25.874+(37654−37679) = 25.874−25.000 = 0.87400.

The difference is fairly substantial (one is exact, the
other is off by more than 10%), especially if this
number needs to be used in a future calculation!

16

On errors . . .

Let x̂ be an approximation to a real number x.

Then the absolute error in x̂ is defined to be

Eabs = |x− x̂|,

and the relative error is defined to be

Erel =
|x− x̂|
|x|

.

Notes:

1. Erel is not defined for x = 0.

2. The absolute value (| · |) can be removed in the
definition of Eabs if the sign of the error is important.

3. In practice, often a mix of absolute and relative
errors are used to assess accuracy (or set tolerances).

17

Floating-point numbers

The chief advantage of the floating-point
representation is that it can encompass a large range
of numbers with a fixed amount of information.

For example, suppose we can store 6-digit numbers
with 5 digits after the decimal place.

Then the largest number we can store is 9.99999 ≈ 10
and the smallest is 0.00001 = 10−5.

However, if we allocate 2 digits to represent an
exponent (to base 10), then we can represent a much
larger range of numbers.

The largest representable number is now 9.999× 1099.

The smallest representable number is 1.000× 10−99.

The price we have paid to get the increase in range is
that we only have 4 significant digits instead of 6.

However, this tradeoff is favourable.

18

The concepts behind floating-point arithmetic on a
computer follow these principles, except things are
done in base 2.

The rest of our study of floating-point arithmetic will
focus on the various nuances of dealing with real
computer hardware.

In case you were wondering, base 2 has been adopted as
the base for computer arithmetic primarily for economic
reasons (although it turns out that small bases are a
good idea for other reasons).

It is cheapest to manufacture transistors and detect
whether they have a voltage on them (1) or not (0).

This leads to 2 (binary) voltage states that can be
reliably created and measured, and hence base 2.

In contrast, ternary (or base 3) arithmetic could rely
on whether a transistor had a certain voltage (+1), no
voltage (0), or a reverse voltage (–1).

Unfortunately, such transistors are not as cheap to
manufacture, nor is the production and detection of
the voltage states as reliable.

19

Floating-Point Numbers

Because computers use base 2 to represent numbers,
most real nonzero floating-point numbers are
normalized to the form:

x = ±(1 + f) · 2e.

The quantity f is called the fraction or mantissa, and
e is called the exponent. The fraction satisfies

0 ≤ f < 1.

The finiteness of f is a limitation on precision (how
many significant digits can be stored).

The finiteness of e is a limitation on range (what
numbers can be represented by the computer).

Any numbers that do not meet these limitations must
be approximated by ones that do.

20

A Toy Floating-Point Number System

Imagine a floating-point number system using base 2.

Let f consist of t bits (binary digits; 0’s or 1’s), and
let

emin ≤ e ≤ emax.

Suppose t = 2, emin = −2, and emax = 1.

Then all the positive numbers in this floating-point
number system are all the possible combinations of the
binary numbers

1.00, 1.01, 1.10, 1.11

and the exponents

−2,−1, 0, 1.

This leads to a total of 16 positive floating-point
numbers in our number system. See floatgui.m

21

http://www.cs.usask.ca/~spiteri/M211/notes/floatgui.m

Some things to notice:

• Within each (binary) interval, i.e., intervals of the
form 2e ≤ x ≤ 2e+1, the floating-point numbers are
equally spaced, with an increment of 2e−t.

For example, if e = 0 and t = 2, the spacing of the
floating-point numbers between 1 and 2 is 1/4.

• As e increases, the (absolute) spacing between
floating-point numbers increases.

• With the logarithmic scale, it is more apparent that
the distribution in each binary interval is the same;
i.e., the relative spacing is constant.

• The distance between 1 and the next larger floating-
point number is εmachine = 2−t; εmachine is known
as machine epsilon.

• The smallest number that can be added to 1 and
results in a number greater than 1 is u = 2−(t+1);
ue is known as unit round-off.

22

Double Precision

Double-precision floating-point numbers are stored in
a 64-bit word, with 52 bits for f , 11 bits for e, and 1
bit for the sign of the number.

f must be representable in binary (base 2) using at
most 52 bits. In other words, 252f is an integer
satisfying

0 ≤ 252f < 252.

The exponent e is an integer in the interval

−1022 ≤ e ≤ 1023.

The sign of e is accommodated by actually storing
e+ 1023, which is a number between 1 and 211 − 2.

The two extreme values for the exponent field (0 and
211 − 1) are reserved for exceptional floating-point
numbers that we will describe later.

23

Note 2. The entire fractional part of a floating-point
number is not f , but 1+f , which has 53 bits. However
the leading 1 doesn’t need to be stored. In effect,
the IEEE double-precision format packs 65 bits of
information into a 64-bit word.

How much sleep should we lose over the gaps in the
IEEE floating-point number system?

In one sense, not much. Here is a way to see it.

According to molecular physics, there are
approximately 3× 108 molecules per meter in a gas at
atmospheric conditions — essentially the cube root of
Avogadro’s number. The circumference of the Earth is
4 × 107 meters; so in a circle around the Earth, there
are around 1016 molecules.

In IEEE double-precision arithmetic, there are 252

numbers between 1 and 2, and 252 ≈ 1016.

So if we put a giant circle around the Earth to represent
the range from 1 to 2, the spacing of the double-
precision floating-point numbers along the circle is
about the same as the spacing of the air molecules.

24

Ubiquitous, innocuous round-off error

Round-off error even occurs with the innocuous-looking
Matlab statement

t = 0.1

The value t stored is not exactly 0.1 because 0.1 =
1/10 requires an infinite series in binary:

1

10
=

0

21
+

0

22
+

0

23
+

1

24
+

1

25

+
0

26
+

0

27
+

1

28
+

1

29

+
0

210
+

0

211
+

1

212
+

1

213
+ . . .

Note that after the first term, the sequence of
coefficients {0, 0, 1, 1} is repeated infinitely often.

So the value stored in t is very close to, but not exactly
equal to, 0.1.

This distinction can occasionally be important!

25

A simple example of round-off error

Consider the following Matlab code segment:

format long

a = 4/3

b = a - 1

c = 3*b

e = 1 - c

In exact arithmetic, e = 0. What happens in Matlab?

Note 3. Before the IEEE standard, this code segment
was used as a quick (and dirty) way to estimate εmachine

on a given computer.

26

Machine Epsilon

A very important quantity associated with floating-
point arithmetic is machine epsilon, εmachine.

In Matlab, it is called eps.

Definition 1. εmachine is defined to be the distance
from 1 to the next larger floating-point number.

For the floatgui model floating-point system,
εmachine = 2−t.

Before the IEEE standard, different machines had
different values of εmachine.

Now, for IEEE double-precision,

εmachine = 2−52 ≈ 2.2204× 10−16

(i.e., numbers are stored to about 16 digits).

27

εmachine is not “floating-point zero”

There are many floating-point numbers between
εmachine and 0.

The smallest positive normalized floating-point number
has f = 0 and e = −1022. Matlab calls this number
realmin.

The largest floating-point number has f a little less
than 1 and e = 1023. Matlab calls this number
realmax.

In summary,

eps = 2−52 ≈ 2.2204× 10−16

realmin = 2−1022 ≈ 2.2251× 10−308

realmax = (2− εmachine) ∗ 21023 ≈ 1.7977× 10+308

28

• Recall that if any computation is asked to produce
a value larger than realmax, it is said to overflow.

The result is an exceptional floating-point value
called infinity or Inf in Matlab.

Inf is represented by taking e = 1024 and f = 0.

Inf can make sense in calculations;
e.g., 1/Inf = 0 and Inf+Inf = Inf.

• If any computation is asked to produce a value that
is undefined in the real number system, the result
is an exceptional value called Not-a-Number (NaN).

Examples include 0/0 and Inf–Inf.

The value NaN is represented by taking e = 1024
and any f 6= 0.

29

• If any computation is asked to produce a value
smaller than realmin, it is said to underflow.

This involves subnormal (or denormal) floating-
point numbers in the interval between realmin

and εmachine∗realmin.

The smallest positive subnormal number is
2−52−1022 ≈ 4.94× 10−324.

Any results smaller than this are set to 0.

On machines without subnormal numbers, any
results less than realmin are set to 0.

The subnormal numbers live between 0 and
the smallest positive normalized number (recall
floatgui.m).

They provide an elegant way to handle underflow,
but their importance for computation is rare.

Subnormal numbers are represented by the special
value e = −1023, so the biased exponent (e+1023)
is 0.

30

• Matlab uses the floating-point system to handle
integers.

Mathematically, the numbers 3 and 3.0 are
equivalent, but many programming languages would
use different representations for the two.
Matlab does not make such a distinction!

We sometimes use the term flint to describe a
floating-point number whose value is an integer.

Floating-point operations on flints do not introduce
any round-off error, as long as the results are not
too large.

Specifically:

– Individual addition, subtraction, and multiplication
of flints produce the exact flint result, if the result
is not larger than 253.

Beware of intermediate steps exceeding this limit!

– Division and square root involving flints also
produce a flint if the result is an integer.
For example, sqrt(363/3) produces 11, with no
round-off error.

31

Computing with Polynomials and
Horner’s Method

Polynomials are one of the most common tools in
applied mathematics.

Dealing with them properly in floating-point arithmetic
is important!

Consider the following Matlab code segment:

x = 0.988:.0001:1.012;

y = x.^7-7*x.^6+21*x.^5-35*x.^4+35*x.^3-21*x.^2+7*x-1;

plot(x,y)

What is this code segment supposed to do?

Consider replacing the second line with

y = (x-1).^7;

or

y=-1+x.*(7+x.*(-21+x.*(35+x.*(-35+x.*(21+x.*(-7+x))))));

See hornerDemo.m

32

http://www.cs.usask.ca/~spiteri/M211/notes/hornerDemo.m

Horner’s Method

To reduce round-off error and computational effort, it
is best to use Horner’s method to evaluate polynomials.

In order to evaluate the polynomial

p(x) = a0 + a1x+ a2x
2 + . . .+ anx

n,

we re-write it and evaluate it as

p(x) = a0+x(a1+x(a2 + . . .+ x(an−1 + anx) . . .)).

33

Easy as 1, 2, 3

I do hate sums. There is no greater mistake than
to call arithmetic an exact science. There are
. . . hidden laws of Number which it requires a
mind like mine to perceive. For instance, if you
add a sum from the bottom up, and then again
from the top down, the result is always different.
— Mrs. La Touche (1924)

We have seen that floating-point operations do not
satisfy the axioms of operations with real numbers.

So even the order in which you add numbers matters!

34

Easy as 1, 2, 3

Consider the natural implementation (known as
recursive summation) of

∑n
i=1 xi in Matlab as

s = 0;

for i=1:n,

s = s + x(i);

end

yields an answer that depends on the order of the xi.

There is a famous algorithm due to Kahan (1965)
that estimates the error produced when summing
two numbers and accumulates this error during the
computation.

It is based on the observation that the round-off
error in the sum of two numbers can be estimated
by subtracting one of the numbers from the sum.

35

Compensated Summation

The way this works can roughly be described as follows:

Imagine two numbers a and b such that |a| ≥ |b|.

Their exact sum is s = a+ b = ŝ+ e.

Let a = a1 + a2 and b = b1 + b2, where a2 and b1 are
determined by the significance overlap of the numbers.

For example, in 5-digit arithmetic

3.1416+0.023072 = (3.1+0.0416)+(0.02307+0.000002).

Then
ŝ = a1 + (a2 + b1).

Now
ŝ− a = b1 + 0,

and thus

(ŝ− a)− b = −b2 + 0 = −e.

36

Compensated Summation

Here is the algorithm:

s = 0; e = 0; % initialize sum and error

for i=1:n,

temp = s; % temporary sum

y = x(i) + e; % read in the next element and compensate

s = temp + y; % form sum from temporary element and

% compensated element

e = (temp - s) + y; % compute estimated error and carry forward

end

Two things to note, however:

1. The error is only estimated; the exact answer will
not be magically produced as it would be if we had
the exact error.

2. It costs extra to compute and store the error.

See cSumDemo.m

37

http://www.cs.usask.ca/~spiteri/M211/notes/cSumDemo.m

Compensated Summation

Note 4. The pinnacle of this type of algorithm is
a doubly compensated summation by Priest (1992),
which under reasonable assumptions satisfied by IEEE
arithmetic with t digits, base β, and provided n ≤ βt−3,
the computed sum ŝn satisfies

|sn − ŝn| ≤ 2ue|sn|.

This is basically accuracy to full precision.

38

