
Chapter 2 - Linear Equations

2.1 Solving Linear Equations

One of the most common problems in scientific
computing is the solution of linear equations.

It is a problem in its own right, but it also occurs as a
sub-problem for many other problems.

For example, as we will see, the solution of a nonlinear
system of equations is typically approximated through
a sequence of solutions of linear systems.

The discretization of a linear elliptic partial differential
equation typically leads to the solution of a (highly
structured) linear system of equations.

1

Here is a simple example: Three unknowns x, y, and z
satisfy

2x + 4y − 2z = 2,
4x + 9y − 3z = 8,
−2x − 3y + 7z = 10.

The goal is to find the magical values of x, y, z that
satisfy all 3 of the above equations.

Before we talk about strategies to solve linear systems,
we start by standardizing the notation to generalize
the problem to m equations in m unknowns.

Relabel the unknowns x = (x1, x2, . . . , xm)T ,
the coefficients a11, a21, . . . , am1, a21, a22, . . . , a2m,
. . . , am1, am2, . . . , amm, and the right-hand side values
b = (b1, b2, . . . , bm)T .

2

a11x1 + a21x2 + . . .+ a1mxm = b1,

a21x1 + a22x2 + . . .+ a2mxm = b2,

...

am1x1 + am2x2 + . . .+ ammxm = bm.

In matrix notation:

Ax = b.

Formally, the solution to this problem is

x = A−1b.

However, in practice we never actually find the inverse
of A and then multiply it by b to get x!

3

Suppose we wish to solve the easy equation 7x1 = 21.

If we find the inverse of 7 and multiply it by 21 to get
x1, this requires 2 floating-point operations and suffers
from roundoff error:

x1 = 7−1 × 21 ≈ 0.142857× 21 ≈ 2.99997.

The cheapest and most accurate way to solve this
equation is by division:

x1 =
21

7
= 3.

Although this example may look artificial, these
principles extend to larger systems, where they become
even more important!

4

2.2 The \ Operator

To emphasize the distinction between solving linear
equations and computing inverses, Matlab uses the
backward slash (or backslash) operator \.

If A is a matrix of any size and shape and b is a
vector with as many rows as A, then the solution to
the system of simultaneous equations Ax = b can be
computed in Matlab by x = A\b.

If it helps, you can think of this as “left-dividing” both
sides of the equation by the coefficient matrix A.

→ Because matrix multiplication is not commutative
and A occurs on the left in the original equation, this
is left division.

Note 1. This operator can be applied even if A is
not square; i.e., the number of equations is not the
same as the number of unknowns.

However, in this course, we always assume A is square.

5

Note 2. Solving the linear system Ax = b for
multiple right-hand sides b1, b2, . . . , bp, can be
done all at once by defining B = [b1,b2, . . . ,bp] and
using the command X = A\B.

The answers come out in matrix X = [x1,x2, . . . ,xp].

6

2.3 Simple Examples

The simplest kinds of linear systems to solve are ones
where the unknowns are decoupled. For example,

0.3x1 = 3, 5x2 = 1.5, 2x3 = −4.

In matrix form,0.3 0 0
0 5 0
0 0 2

x1x2
x3

 =

 3
1.5
−4

 .
Note that the coefficient matrix is diagonal.

In this case, the unknowns can be solved for
independently ; e.g., in any order, or in batches if
you have a parallel computer.

7

It is possible to reduce a non-singular matrix to diagonal
form and then solve for the unknowns; this is known
as Gauss–Jordan elimination.

In practice, Gauss–Jordan elimination is more expensive
than another method (Gaussian elimination) that works
just as well.

Gaussian elimination is based on a systematic1

procedure to reduce the coefficient matrix A to upper-
triangular form.

What’s the advantage of upper-triangular form?

It turns out that you can solve for the unknowns in an
upper-triangular system of linear equations one after
the other.

We will see this in the next section; but for future
reference and to appreciate the concept of equation
manipulation as matrix multiplication, we first look at
permutation and triangular matrices.

1So that it can be programmed!

8

2.4.1 Permutation Matrices

Sometimes you may want to interchange rows or
columns of a matrix. This operation can be represented
by matrix multiplication by a permutation matrix .

Definition 1. A permutation matrix P is a matrix
made by taking the identity matrix and interchanging
its rows or columns.

In other words, P has exactly one 1 in each row and
column; all the other elements are 0.

Here is an example of a permutation matrix:

P =


0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0

 .
How is it related to the 4× 4 identity matrix I?

Row 4 of I is Row 1 of P; Row 1 of I is Row 2 of P;
Row 3 of I is Row 3 of P; Row 2 of I is Row 4 of P.

9

=⇒ The matrix PA has A’s Row 4 as its Row 1,
A’s Row 1 as its Row 2, A’s Row 3 as its Row 3, and
A’s Row 2 as its Row 4.

Similarly,

Col 2 of I is Col 1 of P; Col 4 of I is Col 2 of P;
Col 3 of I is Col 3 of P; Col 1 of I is Col 4 of P.

=⇒ The matrix APT has A’s Col 4 as its Col 1, A’s
Col 1 as its Col 2, A’s Col 3 as its Col 3, and A’s Col
2 as its Col 4.

Note 3. A compact way to store P (or simply keep
track of permutations) is in a vector.

e.g., The row interchanges represented by P in our
example can be stored as the vector p = [4 1 3 2].

A quick way to create a matrix B from interchanging
the rows and columns of A via p is B = A(p,p).

Permutation matrices are orthogonal matrices; i.e.,
they satisfy

PTP = I, or equivalently P−1 = PT .

10

2.4.2 Triangular Matrices

An upper-triangular matrix has all its nonzero elements
on or above the main diagonal.

A lower-triangular matrix has all its nonzero elements
on or below the main diagonal.

A unit lower-triangular matrix is a lower-triangular
matrix with ones on the main diagonal.

Here are examples of an upper-triangular matrix U and
a unit lower-triangular matrix L:

U =

1 2 3
0 4 5
0 0 6

 , L =

1 0 0
2 1 0
3 4 1

 .

11

Linear equations involving triangular matrices are easy
to solve.

We focus on the case for upper-triangular systems
because it will be relevant in LU factorization.

One way to solve an m ×m upper-triangular system,
Ux = b is to begin by solving the last equation for
the last variable, then the next-to-last equation for
the next-to-last variable, and so on, using the newly
computed values of the solution along the way.

Here is some Matlab code to do this:

x = zeros(m,1);

for k = m:-1:1,

j = k+1:m;

x(k) = (b(k) - U(k,j)*x(j))/U(k,k);

end

12

2.4.3 Banded Matrices

A matrix A is called a banded matrix with lower
bandwidth p and upper bandwidth q if

ai,j = 0 if i > j + p or j > i+ q.

The band width of A is naturally defined as p+ q+1.

A has p sub-diagonals and q super-diagonals, and the
band width is the total number of diagonals.

Important special cases of banded matrices are

• diagonal matrices (p = q = 0),
tridiagonal matrices (p = q = 1),
pentadiagonal matrices (p = q = 2),

...
full matrices (p = q = bm/2c)

• bidiagonal matrices
(lower: (p, q) = (1, 0), upper: (p, q) = (0, 1))

Hessenberg matrices (lower: q = 1; upper: p = 1)

13

2.5 LU Factorization

The LU factorization is the factorization of a matrix
A into the product of a unit lower-triangular matrix
and an upper-triangular matrix; i.e., A = LU.

The LU factorization is an interpretation of Gaussian
elimination, one of the oldest numerical methods,
generally named after Gauss.

It is perhaps the simplest systematic way to solve
systems of linear equations by hand, and it is also the
standard method for solving them on a computer.

Research between 1955 to 1965 revealed the
importance of two aspects of Gaussian elimination
that were not emphasized in earlier work: the search
for pivots and the proper interpretation of the effect of
rounding errors.

Pivoting is essential to the stability of Gaussian
elimination!

14

The first important concept is that the familiar process
of eliminating elements below the diagonal in Gaussian
elimination can be viewed as matrix multiplication.

The elimination is accomplished by subtracting
multiples of each row from subsequent rows.

Before we see the details, let’s pretend we know how
to do this in a systematic fashion.

The elimination process is equivalent to multiplying A
by a sequence of lower-triangular matrices Lk on the
left

Lm−1Lm−2 . . .L1A = U,

where Lk eliminates the elements below the diagonal
in row k.

In other words, we keep eliminating elements below
the diagonal until A has been reduced to an upper-
triangular matrix, which we call U.

15

Setting
L−1 = Lm−1Lm−2 . . .L1,

or equivalently,

L = L−11 L−12 . . .L−1m−1,

gives an LU factorization of A

A = LU,

where L is lower-triangular and U is upper-triangular.

In practice, we can choose L to be unit lower-triangular.

16

Example: Suppose A is 4× 4:
× × × ×
× × × ×
× × × ×
× × × ×

 −→
L1


× × × ×
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗


A L1A

× × × ×
× × ×
× × ×
× × ×

 −→
L2


× × × ×
× × ×
0 ∗ ∗
0 ∗ ∗


L1A L2L1A

× × × ×
× × ×
× ×
× ×

 −→
L3


× × × ×
× × ×
× ×
0 ∗


L2L1A L3L2L1A

3 EXAMPLE

Let

A =


2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8

 .

(This particular A was chosen because it has a nice
LU decomposition.)

17

So,

L1A =


1
−2 1
−4 1
−3 1




2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8

 =


2 1 1 0

1 1 1
3 5 5
4 6 8

 .

(Subtract 2 × row 1 from row 2, 4 × row 1 from row
3, and 3 × row 1 from row 4.)

Further,

L2L1A =


1

1
−3 1
−4 1




2 1 1 0
1 1 1
3 5 5
4 6 8

 =


2 1 1 0

1 1 1
2 2
2 4

 .

(Subtract 3 × row 2 from row 3 and 4 × row 2 from
row 4.)

18

Finally,

L3L2L1A =


1

1
1
−1 1




2 1 1 0
1 1 1

2 2
2 4



=


2 1 1 0

1 1 1
2 2

2

 = U.

(Subtract row 3 from row 4.)

To obtain A = LU, we need to form

L = L−11 L−12 L−13 .

This turns out to be easy, thanks to two happy
surprises.

L−11 can be obtained from L1 by negating the off-
diagonal entries:

L
−1
1 =


1
−2 1
−4 1
−3 1


−1

=


1
2 1
4 1
3 1

 .

19

(Similarly, the same is true for L2 and L3.)

Also, L−11 L−12 L−13 is obtained by “merging” the
individual non-zero elements.

i.e.,

L
−1
1 L

−1
2 L

−1
3 =


1
2 1
4 3 1
3 4 1 1

 .

Thus,

A =


2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8



=


1
2 1
4 3 1
3 4 1 1




2 1 1 0
1 1 1

2 2
2

 = LU.

See lugui.m

lugui([2 1 1 0; 4 3 3 1; 8 7 9 5; 6 7 9 8], ’diagonal’)

Note: “diagonal” pivoting = no pivoting.

20

http://www.cs.usask.ca/~spiteri/M211/notes/lugui.m

To formalize the facts that we need (without proof!):

1. In Gaussian elimination, elimination of elements
below the diagonal in row k by row operations
against row k (the pivot row) can be viewed as
left-multiplication by a unit lower-triangular matrix
with elements ljk in column k with ljk = −(element
to eliminate)/(pivot).

2. Lk can be inverted by negating the off-diagonal
elements −ljk (so L contains ljk),

3. L can be formed by merging the entries ljk.

Of course, in practice, the matrices Lk are never formed
and multiplied explicitly.
→ Only the quantities ljk are computed and stored,
often in the lower triangle of A, which would otherwise
contain zeros upon reduction to U.

21

How does this help us solve Ax = b?

Writing this as LUx = b, this can now be solved by
solving two triangular systems.

First solve Ly = b for an intermediate variable y
(forward substitution).

Then solve Ux = y for the unknown variable x (back
substitution).

Once we have L and U, solving for the unknown x is
quick and easy for any number of right-hand sides b.

22

Pivoting

Pure Gaussian elimination is unstable.

Fortunately, this instability can be controlled by
permuting the rows of A as we proceed.

This process is called pivoting .

Pivoting has been a standard feature of Gaussian
elimination computations since the 1950s.

At step k of Gaussian elimination, multiples of row k
are subtracted from rows k + 1, k + 2, . . . ,m of the
working matrix X in order to zero out the elements
below the diagonal.

In this operation, row k, column k, and especially xkk
play special roles.

We call xkk the pivot.

23

From every entry in the submatrix X(k+1 : m, k : m),
we subtract the product of a number in row k and a
number in column k, divided by xkk.


× × × × ×

xkk × × ×
× × × ×
× × × ×
× × × ×

 −→

× × × × ×

xkk × × ×
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 .

But there is no inherent reason to eliminate against
row k.

We could just as easily zero out other entries against
row i, k < i ≤ m.

In this case, xik would be the pivot.

e.g., k = 2, i = 4:


× × × × ×

× × × ×
× × × ×
xik × × ×
× × × ×

 −→

× × × × ×

0 ∗ ∗ ∗
0 ∗ ∗ ∗
xik × × ×
0 ∗ ∗ ∗

 .

24

Similarly, we could zero out the entries in column j
instead of column k, k < j ≤ m.

e.g., k = 2, i = 4, j = 3:
× × × × ×
× × × ×
× × × ×
× xij × ×
× × × ×

 −→

× × × × ×

∗ 0 ∗ ∗
∗ 0 ∗ ∗
× xij × ×
∗ 0 ∗ ∗



Basically, we can choose any entry of X(k : m, k : m)
as the pivot, as long as it is not zero.

This flexibility is good because xkk = 0 is possible even
in exact arithmetic for non-singular matrices!

In a floating-point number system, xkk may be
“numerically” zero.

For stability, we choose as pivot the element with the
largest magnitude among the pivot candidates.

Pivoting in this crazy (but smart!) fashion can be
confusing.

25

→ It is easy to lose track of what has been zeroed and
what still needs to be zeroed.

Instead of leaving xij in place after it is chosen as
pivot (as illustrated above) we interchange rows and
columns so that xij takes the position of xkk.

This interchange of rows and/or columns is what is
commonly referred to as pivoting .

→ The look of pure Gaussian elimination is maintained.

Note 4. Elements may or may not actually be
swapped in practice!

We may only keep a list of the positions of the swapped
elements.

It is actually possible to search over all the elements in
the matrix to find the one with the largest magnitude
and swap it into the pivot element.

(This strategy is called complete pivoting .)

But this would involve permutations of columns, and
that means re-labelling the unknowns.

26

In practice, pivots of essentially the same quality can
be found by searching only within the column being
zeroed.
→ This is known as partial pivoting .

Recall: The act of swapping rows can be viewed as
left-multiplication by a permutation matrix P.

We have seen that the elimination at step k
corresponds to left-multiplication by a unit lower-
triangular matrix Lk.

So the kth step of Gaussian elimination with partial
pivoting can be summed up as
× × × × ×

× × × ×
× × × ×
xik × × ×
× × × ×

 Pk−→


× × × × ×

xik ∗ ∗ ∗
× × × ×
∗ ∗ ∗ ∗
× × × ×


pivot selection row interchange

× × × × ×
xik ∗ ∗ ∗
× × × ×
∗ ∗ ∗ ∗
× × × ×

 Lk−→


× × × × ×

xik × × ×
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗


row interchange elimination

27

After m − 1 steps, A is transformed into an upper-
triangular matrix U:

Lm−1Pm−1 . . .L2P2L1P1A = U.

Example: Recall our friend
2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8

 .

To do Gaussian elimination with partial pivoting
proceeds as follows:

Interchange the 1st and 3rd rows (left-multiplication
by P1):

1
1

1
1




2 1 1 0
4 3 3 1
8 7 9 5
6 7 9 8

 =


8 7 9 5
4 3 3 1
2 1 1 0
6 7 9 8

 .

28

The first elimination step now looks like this (left-
multiplication by L1):


1

−1
2 1

−1
4 1

−3
4 1




8 7 9 5
4 3 3 1
2 1 1 0
6 7 9 8



=


8 7 9 5

−1
2 −3

2 −3
2

−3
4 −5

4 −5
4

7
4

9
4

17
4

 .

Now the 2nd and 4th rows are interchanged
(multiplication by P2):


1

1

1

1




8 7 9 5

−1
2 −3

2 −3
2

−3
4 −5

4 −5
4

7
4

9
4

17
4



=


8 7 9 5

7
4

9
4

17
4

−3
4 −5

4 −5
4

−1
2 −3

2 −3
2

 .

29

The second elimination step then looks like this
(multiplication by L2):


1

1
3
7 1
2
7 1




8 7 9 5
7
4

9
4

17
4

−3
4 −5

4 −5
4

−1
2 −3

2 −3
2



=


8 7 9 5

7
4

9
4

17
4

−2
7

4
7

−6
7 −2

7

 .

Now the 3rd and 4th rows are interchanged
(multiplication by P3)


1

1

1

1




8 7 9 5
7
4

9
4

17
4

−2
7

4
7

−6
7 −2

7



=


8 7 9 5

7
4

9
4

17
4

−6
7 −2

7
−2

7
4
7

 .

30

The final elimination step look like this (multiplication
by L3):


1

1

1

−1
3 1




8 7 9 5
7
4

9
4

17
4

−6
7 −2

7
−2

7
4
7



=


8 7 9 5

7
4

9
4

17
4

−6
7 −2

7
2
3

 .

3 PA = LU AND A THIRD HAPPY SURPRISE

Notice that if you form L and then LU from the
previous example, you don’t get LU = A!

Was all of our work for nothing?

No! It turns out that we can manipulate this
information to get a permuted version of A.

(This might be understandable because we have been
messing around with pivots.)

31

In fact,
LU = PA,

where


1
3
4 1
1
2 −2

7 1
1
4 −3

7
1
3 1




8 7 9 5
7
4

9
4

17
4

−6
7 −2

7
2
3



=


0 0 1 0

0 0 0 1

0 1 0 0

1 0 0 0




2 1 1 0

4 3 3 1

8 7 9 5

6 7 9 8

 .

Note 5. **IMPORTANT**
The entries of L all satisfy |lij| ≤ 1.
This is a consequence of pivoting
(↔ eliminating against |xkk| = maxj |xjk|).

But given the way the permutations were introduced,
it is not obvious as to why all of them can be lumped
into one big P;

32

i.e.,
L3P3L2P2L1P1A = U.

Here is where we use a third stroke of good luck:

These (elementary) operations can be reordered as
follows:

L3P3L2P2L1P1 = L′3L
′
2L
′
1P3P2P1,

where L′k =(Lk with subdiagonal entries permuted).

To be precise,

L′3 = L3,

L′2 = P3L2P
−1
3 ,

L′1 = P3P2L1P
−1
2 P−13 .

Note 6. Each Pj has j > k for Lk.
=⇒ L′k has the same structure of Lk! (verify!)

33

Thus,

L
′
3L
′
2L
′
1P3P2P1 = L3(P3L2P

−1
3)(P3P2L1P

−1
2 P

−1
3)P3P2P1

= L3P3L2P2L1P1.

In the general m×m case, Gaussian elimination with
partial pivoting can be written as

(L′m−1 . . .L
′
2L
′
1)(Pm−1 . . .P2P1)A = U,

where

L′k = Pm−1 . . .Pk+1LkP
−1
k+1 . . .P

−1
m−1.

Now we write

L = (L′m−1 . . .L
′
2L
′
1)
−1

and
P = (Pm−1 . . .P2P1)

to get
PA = LU.

34

Note 7. In general, any square matrix (whether non-
singular or not) has a factorization PA = LU, where
P is a permutation matrix, L is unit lower-triangular
and whose elements satisfy |lij| ≤ 1, and U is upper-
triangular.

Despite this being a bit of an abuse, this factorization
is really what is meant by the LU factorization of A.

The formula PA = LU has another great
interpretation:

If you could permute A ahead of time using matrix P,
then you could apply Gaussian elimination to A and
you would not need pivoting!

Of course, this cannot be done in practice because P
is not known a priori.

See lugui.m

See also pivotgolf.m

35

http://www.cs.usask.ca/~spiteri/M211/notes/lugui.m
http://www.cs.usask.ca/~spiteri/M211/notes/pivotgolf.m

Solution of Banded Systems

Banded systems arise fairly often in practice; they can
be solved by a streamlined version Gaussian elimination
that only operates within the bandwidth.

In fact, the streamlined solution of tridiagonal systems
by (pure) Gaussian elimination is occasionally called
the Thomas algorithm.

In general, a solver would need to be told that the
input coefficient matrix A is banded, but Matlab
can detect bandedness automatically.

We now explore the algorithm to solve a tridiagonal
linear system by Gaussian elimination with pivoting.

Note: Complete pivoting destroys the bandedness,
causing fill-in, but partial pivoting preserves it.

Fill-in refers to the creation of non-zero elements where
(structurally) zero elements used to be; it is undesirable
because the newly created elements must be stored and
operated on (they are generally not zero!).

36

Solution of Tridiagonal Systems

We begin with the augmented matrix

T =



b1 c1 0 0 0 0 d1
a2 b2 c2 0 0 0 d2
0 a3 b3 c3 0 0 d3
0 0 0 ...

0 0 0 am−1 bm−1 cm−1 dm−1
0 0 0 0 am bm dm


.

We can visualize the fill-in produced by pivoting by
using lugui:

m = 6;

lugui(diag(ones(m-1,1),-1) + 2* diag(ones(m,1)) ...

+ diag(ones(m-1,1),1), option)

where option = ’partial’ or ’complete’.

37

The Thomas Algorithm

We now present a rendition of the Thomas algorithm
without pivoting (for simplicity).

The key to the algorithm is to notice that every step
of Gaussian elimination works on a system like

bixi + cixi+1 = di,

ai+1xi + bi+1xi+1 + ci+1xi+2 = di+1.

Zeroing below the diagonal only involves one element
and requires a multiplier −ai+1/bi, so that the next
system to solve is

b̃i+1xi+1 + ci+1xi+2 = d̃i+1,

ai+2xi+1 + bi+2xi+2 + ci+2xi+3 = di+2,

where b̃i+1 = bi+1−ai+1ci/bi and d̃i+1 = di+1−ai+1di/bi.

38

The Thomas Algorithm

Thus, the new system is of the same form as the
previous one, so the procedure can be repeated.

This leads to the following algorithm:

% forward substitution

b̃1 = b1; d̃1 = d1;

for i = 2:m,

l = ai/b̃i−1;

b̃i = bi − l ci−1;

d̃i = di − l d̃i−1;

% backward substitution

xm = d̃m/b̃m;

for i = m-1:-1:1,

xi = (d̃i − ci xi−1)/b̃i;

39

The Thomas Algorithm

In practice, the “tilde” variables are not stored; the
original variables are over-written.

To avoid additionally complicating the translation of
the algorithm to code, we are not storing the multipliers
l, but they could easily be stored in the lower diagonal.

See

thomasAlgorithmDemo.m

40

http://www.cs.usask.ca/~spiteri/M211/notes/thomasAlgorithmDemo.m

2.6 Why Is Pivoting Necessary?

Recall, the diagonal elements of U are called pivots.

Formally, the kth pivot is the coefficient of the kth
variable in the kth equation at the kth step of the
elimination.

Both the computation of the multipliers and the back
substitution require divisions by the pivots.

So, Gaussian elimination fails if any of the pivots are
zero, but the problem may still have a perfectly well
defined solution.

It is a also bad idea to complete the computation if
any of the pivots are nearly zero!

To see what bad things can happen, consider a small
modification to the problem 10 −7 0

−3 2 6

5 −1 5


x1x2
x3

 =

74
6

 .
41

This problem has the exact solution x = (0,−1, 1)T .

Change a22 from 2 to 2.099.

Note: Also change b2 so that the exact solution is still
x = (0,−1, 1)T .

 10 −7 0

−3 2.099 6

5 −1 5


x1x2
x3

 =

 7

3.901

6

 .
Suppose our computer does floating-point arithmetic
with 5 significant digits.

The first step of the elimination produces

 10.000 −7.0000 0.0000

0.0000 −0.0010 6.0000

0.0000 2.5000 5.0000


x̂1

x̂2

x̂3

 =

7.0000

6.0010

2.5000

 .

The (2, 2) element is now quite small compared with
the other elements in the matrix.

42

If we continue without pivoting, the next step requires
adding 2.5000× 103 times the second equation to the
third, leading to:

(5.0000+ (2.5000× 10
3
)(6))x̂3 = 2.5000+ (2.5000× 10

3
)(6.0010).

Now the exact answer to the product on the right-hand
side is 1.50025 × 104, which cannot be represented
exactly in our hypothetical floating-point number
system with 5 significant digits.

It must be rounded to 1.5003× 104.

The result is then added to 2.5000 and rounded again.

So in our hypothetical floating-point number system,
the last equation becomes

1.5005× 104x̂3 = 1.5006× 104.

43

The back substitution begins with

x̂3 =
1.5006× 104

1.5005× 104
= 1.0001.

Because x3 = 1, the error is not too serious.

However, x̂2 is determined from

−0.00100x̂2 + (6.0000)(1.0001) = 6.0010

=⇒ x̂2 =
0.00040

−0.00100
= −0.40000.

Finally x̂1 is determined from

10.000x̂1 + (−7.0000)(−0.40000) = 7.0000 =⇒ x̂1 = −0.42000.

Instead of the exact solution x = (0,−1, 1)T , we get
the approximation x̂ = (−0.42000,−0.40000, 1.0001)T !

What went wrong?

44

• There was no accumulation of rounding error caused
by doing thousands of arithmetic operations.

• The matrix is not close to singular.

The problem comes entirely from choosing a small
pivot at the second step of the elimination!

As a result, the multiplier is 2.5000×103, and the final
equation involves coefficients that are 1000 times as
large as those in the original problem.

Roundoff errors that are small compared to these large
coefficients are not small compared to the entries of
the original matrix and the actual solution!

Exercise: Verify that if the second and third
equations are interchanged, then no large multipliers
are necessary and the final result is accurate.

This turns out to be true in general: If the multipliers
are all less than or equal to one in magnitude, then the
computed solution can be proven to be acceptable.

45

The multipliers can be guaranteed to be less than one
in magnitude through the use of partial pivoting.

At the kth step of the forward elimination, the pivot
is taken to be the element with the largest absolute
value in the unreduced part of the kth column.

The row containing this pivot is then interchanged with
the kth row to bring the pivot element into the (k, k)
position.

Of course, the same interchanges must be done with
the elements of b (otherwise we would be changing
the problem!).

The unknowns in x are not reordered because the
columns of A are not interchanged.

46

2.8 The Effect of Roundoff Errors

Rounding errors always cause the computed solution x̂
to differ from the exact solution, x = A−1b.

In fact, if the elements of x are not floating-point
numbers themselves, then x̂ cannot equal x!

There are two common measures of the quality of x̂:

the error :
e = x− x̂

and the residual :

r = b−Ax̂.

Matrix theory tells us that, because A is nonsingular,
if one of these is 0, then so is the other.

But they may not both be “small” at the same time!

47

Consider the following example:[
0.780 0.563

0.913 0.659

] [
x1
x2

]
=

[
0.217

0.254

]
.

Suppose we carry out Gaussian elimination with partial
pivoting in three-digit arithmetic with truncation.

First, interchange the rows so that 0.913 is the pivot.

The multiplier is −0.780/0.913 = −0.854 (to 3 digits).

The elimination yields:[
0.913 0.659

0 0.001

] [
x̂1
x̂2

]
=

[
0.254

0.001

]
.

Performing the back substitution:

x̂2 = 0.001/0.001 = 1.00 (exactly);

x̂1 = (0.254− 0.659)/0.913 = −0.443 (to 3 digits).

48

Thus the computed solution is x̂ = (−0.443, 1.000)T .

To assess the accuracy without knowing the exact
answer, we compute the residuals (exactly):

r = b−Ax̂ = (−0.000460,−0.000541)T .

The residuals are less than 10−3

→ it is hard to expect better on a 3-digit machine!

However, it is easy to see that the exact solution to
this system is x = (1.000,−1.000)T !

Our computed solution x̂ is so bad that the components
actually have the wrong signs!

So why were our residuals so small?

Of course, this example is highly contrived: The matrix
is very close to being singular (not typical of most
problems in practice).

But we can still understand what happened.

49

If Gaussian elimination with partial pivoting is carried
out for this example on a computer with 6 or more
digits, the forward elimination will produce a system
something like[

0.913000 0.659000

0 0.000001

] [
x̂1
x̂2

]
=

[
0.254000

−0.000001

]
.

Notice that the sign of b2 differs from that obtained
with 3-digit computation.

Now the back substitution produces

x̂2 = −0.000001/0.000001 = −1.00000,

x̂1 = (0.254− 0.659x̂2)/0.913 = 1.00000,

the exact answer!

Key point: On our 3-digit machine, x̂2 was computed
by dividing two quantities, both on the order of
roundoff (and one of which did not even have the
correct sign!).

50

Hence x̂2 can turn out to be almost anything.

Then this arbitrary value of x̂2 was substituted into
the first equation to obtain x̂1, essentially rendering it
arbitrary as well.

We can reasonably expect the residual from the first
equation to be small: x̂1 was computed in such a way
as to make this certain.

Now comes a subtle but crucial point:

We can also expect the residual from the second
equation to be small, precisely because the equations
are almost multiples of each other!

→ Any pair (x̂1, x̂2) that nearly satisfies the first
equation will also nearly satisfy the second.

If the two equations really were multiples of each
other, we would not need the second equation at all:
any solution of the first equation would automatically
satisfy the second one.

This example is admittedly on the phony side, but the
conclusion is not!

51

According to Cleve Moler, this is probably the single
most important fact that we have learned about
matrix computation since the invention of the digital
computer:

Gaussian elimination with partial pivoting is
guaranteed to produce small residuals.

“guaranteed” ↔ it is possible to prove a precise
theorem that bounds the size of the residual
(assuming certain technical details about floating-point
arithmetic).

“small” ↔ on the order of roundoff error relative to:

• the size of the elements of A,

• the size of the elements of the matrix during the
elimination process,

• the size of the elements of x.

52

If any of these are “large”, then the residual will not
necessarily be small in an absolute sense.

Final note: Even if the residual is small, this does not
mean that the error will be small!

The relationship between the size of the residual and
the size of the error is partly determined by the
condition number of A (see next section).

53

2.9 Norms and Condition Numbers

The coefficients defining a system of linear equations
often contain errors; e.g., experimental, roundoff, etc.

Even if the system can be stored exactly, roundoff
errors will be introduced during the solution process.

It can be shown that roundoff errors in Gaussian
elimination have the same effect on the answer as
errors in the original coefficients.

So the question becomes: if the coefficients are altered
slightly, how much is the solution altered?

Put another way, if Ax = b, what is the sensitivity of
x to changes in A and b?

The answer to this question we have to consider the
meaning of “nearly singular” matrices.

If A is a singular matrix, then for some vectors b, a
solution x will not exist, and for others it will not be
unique.

54

So if A is nearly singular, we can expect small changes
in A and b to cause very large changes in x.

On the other hand, if A = I, then x = b.

So if A is close to I, small changes in A and b should
result in correspondingly small changes in x.

It might appear that there is some connection between
the size of the pivots encountered in Gaussian
elimination with partial pivoting and nearness to
singularity: if arithmetic is exact, all pivots would
be nonzero if and only if the matrix is nonsingular.

To some extent, it is also true that if the “partial”
pivots are small, then the matrix is close to singular.

However, in the presence of roundoff, the converse is
no longer true: a matrix might be close to singular
even though none of the pivots are small .

In order to obtain a more precise quantification of
nearness to singularity, we need to introduce the
concept of a norm of a vector.

55

In general, the p-norm of a vector x is denoted by
‖x‖p; it is a scalar that measures the “size” of x.

The family of vector norms known as lp is defined by

‖x‖p =

(
m∑
i=1

|xi|p
)1/p

, 1 ≤ p <∞.

In practice, we only use:

• p = 1 (Manhattan or taxicab norm)

• p = 2 (Euclidean norm)

• p→∞ (Chebyshev or maximum norm)

All three norms are easy to compute, and they satisfy

‖ · ‖1 ≥ ‖ · ‖2 ≥ ‖ · ‖∞.

Often, the specific value of p is not important, and we
simply write ‖x‖.

56

All vector norms satisfy the following relations,
associated with the interpretation it being a distance:

• ‖x‖ > 0 with ‖x‖ = 0 ⇐⇒ x = 0.

• ‖cx‖ = |c|‖x‖ for all scalars c.

• ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality).

The first relation says that the size of a non-zero vector
is positive.

The second relations says that if a vector is scaled by
a factor c then its size is also scaled by c.

The triangle inequality is a generalization of the fact
that the size of one side of a triangle cannot exceed
the sum of the sizes of the other two sides.

A useful variant of the triangle inequality is

‖x− y‖ ≥ ‖x‖ − ‖y‖.

57

In Matlab, ‖x‖p is computed by norm(x,p);
norm(x) defaults to norm(x,2).

See normDemo.m

Multiplication of a vector x by a matrix A results in a
new vector Ax that can be very different from x.

In particular, the change in norm is directly related to
the sensitivity we want to measure.

The range of the possible change can be expressed by
the quantities:

M = max
x 6=0

‖Ax‖
‖x‖

, m = min
x 6=0

‖Ax‖
‖x‖

.

Note: If A is singular, m = 0.

The ratio M/m is called the condition number of A:

κ(A) =
M

m
.

58

http://www.cs.usask.ca/~spiteri/M211/notes/normDemo.m

The precise numerical value of κ(A) depends on the
vector norm being used!

Normally we are only interested in order of magnitude
estimates of the condition number, so the particular
norm is usually not very important.

Consider the linear system

Ax = b

and a perturbed system

A(x+ δx) = (b+ δb).

We think of δb as the error in b and δx as the resulting
error in x.

(We don’t necessarily assume that the errors are small!)

Note: A(δx) = δb.

59

The definitions of M and m imply

‖b‖ ≤M‖x‖, ‖δb‖ ≥ m‖δx‖.

So if m 6= 0,

‖δx‖
‖x‖

≤ κ(A)
‖δb‖
‖b‖

.

Thus, the condition number is a relative error
magnification factor .

In other words, relative changes in b can cause relative
changes in x that are κ(A) times as large.

It turns out that the same is true of changes in A.

κ(A) is also a measure of nearness to singularity:
→ if κ(A) is large, A is close to singular .

60

Some basic properties of the condition number:

• M ≥ m, so κ(A) ≥ 1.

• If P is a permutation matrix, then Px is simply a
rearrangement of x, so ‖Px‖ = ‖x‖ for all x; hence
κ(P) = 1. In particular, κ(I) = 1.

• If A is multiplied by a scalar c, then M and m are
both multiplied by c, so κ(cA) = κ(A).

• If D is a diagonal matrix, then κ(D) = max |dii|
min |dii|

.

These last two properties are reasons that κ(A) is a
better measure of nearness to singularity than det(A).

e.g., consider a 100× 100 diagonal matrix with 0.1 on
the diagonal.

Then det(A) = 10−100 → generally a small number!

But κ(A) = 1, and in fact for linear systems of
equations, such a matrix behaves more like I than like
a singular matrix.

61

Example

Let

A =

[
4.1 2.8

9.7 6.6

]
, b =

[
4.1

9.7

]
.

The solution to Ax = b is x = (1, 0)T .

In the 1-norm, ‖b‖1 = 13.8, and ‖x‖1 = 1.

If we perturb the right-hand side to b̃ = (4.11, 9.70)T ,
then the solution becomes x̃ = (0.34, 0.97)T .

→ A tiny perturbation has completely changed the
solution!

Defining δb = b− b̃ and δx = x− x̃, we find

‖δb‖1 = 0.01, ‖δx‖1 = 1.63.

62

Thus,

‖δb‖1
‖b‖1

= 0.0007246,
‖δx‖1
‖x‖1

= 1.63,

and so

κ(A) ≥ 1.63

0.0007246
= 2249.4.

(We have made it so that in fact cond(A,1)= 2249.4.)

Important note: This example deals with the exact
solutions to two slightly different problems.

→ The method to obtain the solutions is irrelevant!

The example is chosen so that the effect of changing
b is quite pronounced, but similar behaviour can be
expected in any problem with a large condition number.

Now we see how κ(A) also plays a fundamental role
in the analysis of roundoff errors during Gaussian
elimination.

Assume that A and b have elements that are exact
floating-point numbers.

63

Let x be the exact solution, and let x∗ be the vector
of floating-point numbers obtained from Gaussian
elimination representing the computed solution.

Assume A is non-singular and nothing funny happened
like underflows or overflows during the elimination.

Then it is possible to establish the following
inequalities:

‖b−Ax∗‖
‖A‖‖x‖

≤ ρεmachine,
‖x− x∗‖
‖x∗‖

≤ ρκ(A)εmachine,

where ρ is a constant (rarely larger than about 10) and
‖A‖ is the norm of A (to be defined momentarily).

But first, what do these inequalities say?

The first one says that the norm of the relative residual
is about the size of roundoff error — no matter how
badly conditioned the matrix is!

(See example in the previous section.)

64

The second one says that the norm of the relative error
will be small if κ(A) is small — but it might be quite
large if κ(A) is large, i.e., if A is nearly singular !

Now back to defining the matrix norm.

The norm of a matrix A is defined to be

‖A‖ = max
x 6=0

‖Ax‖
‖x‖

.

Technically this is called an induced matrix norm
because it is defined using an underlying vector norm.

(Other matrix norms do exist, but we do not consider
them in this course.)

It turns out that ‖A−1‖ = 1/m, so an equivalent
definition of the condition number of a matrix is
κ(A) = ‖A‖‖A−1‖.

Note: The precise numerical values of ‖A‖ and κ(A)
depend on the underlying vector norm.

65

It is easy to compute the matrix norms corresponding
to the `1 and `∞ vector norms:

‖A‖1 = max
j

m∑
i=1

|aij|, ‖A‖∞ = max
i

m∑
j=1

|aij|.

In words, ‖A‖1 = maximum absolute column sum.

‖A‖∞ = maximum absolute row sum.

Computing the matrix norm corresponding to the `2
vector norm involves the singular value decomposition,
which is beyond the scope of this course.

Matlab computes matrix norms with norm(A,p) for
p= 1, 2, or Inf.

Computing κ(A) requires knowing ‖A−1‖.

But computing A−1 requires roughly 3 times as much
work as solving a single linear system.

Fortunately, the exact value of κ(A) is rarely required.
→ Any good estimate is satisfactory.

66

Matlab has several functions for computing or
estimating condition numbers.

• cond(A) (= cond(A,2)) computes κ2(A). It is
suitable for smaller matrices where the geometric
properties of the `2 norm are important.

• cond(A,1) computes κ1(A). It is less work than
computing cond(A,2).

• cond(A,Inf) computes κ∞(A). It is the same as
cond(A’,1).

• condest(A) estimates κ1(A). It is especially
suitable for large, sparse matrices.

67

