CHAPTER 2: On problem stability

Stability: small changes to input \downarrow small changes to output

But other definitions possible, depending on context.

2.1 Test equation (Dahlquist)

Solution for initial condition y(0):

$$y(t) = e^{\lambda t} y(0), \quad t \ge 0.$$
 (verify!)

For initial condition $\tilde{y}(0)$:

$$\tilde{y}(t) = e^{\lambda t} \tilde{y}(0), \quad t \ge 0.$$

Difference:

$$||y(t) - \tilde{y}(t)|| = ||(y(0) - \tilde{y}(0))e^{\lambda t}||$$

= $||y(0) - \tilde{y}(0)||e^{(\mathcal{R}e\lambda)t}$

Verify:

$$\|e^{\lambda t}\| = e^{(\mathcal{R}e\lambda)t}$$

Pretend:

- y(t) "exact solution" $\tilde{y}(t)$ solution to problem with perturbed ICs $\mathcal{R}e\lambda \leq 0$: difference bounded (stable)
- $\mathcal{R}e\lambda < 0$: difference decays (asymptotically stable)
- $\mathcal{R}e\lambda > 0$: difference unbounded (unstable)
- Technical point: The solution $\mathbf{y}(t)$ to $\dot{\mathbf{y}} = \mathbf{f}(t, \mathbf{y})$ is stable if for all $\epsilon > 0$, there is a $\delta > 0$ such that if $\hat{\mathbf{y}}(t)$ satisfies the ODE and $\|\mathbf{y}(0) - \hat{\mathbf{y}}(0)\| \le \delta$ then

$$\|\mathbf{y}(t) - \hat{\mathbf{y}}(t)\| \le \epsilon$$
 for all $t \ge 0$.

Asymptotically stable = stable + $\|\mathbf{y}(t) - \hat{\mathbf{y}}(t)\| \rightarrow 0$ as $t \rightarrow \infty$.

Example 1.

Review: eigenvalues (of a real $m \times m$ matrix A)

• Definition: λ is an eigenvalue (scalar, complex) and $\mathbf{x} \neq \mathbf{0}$ is an eigenvector (up to scaling factor) if $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$.

Note 1. λ is real if **A** is symmetric (**A** = **A**^T).

 Similarity transformation: If ∃ T nonsingular such that

$$\mathbf{B} = \mathbf{T}^{-1} \mathbf{A} \mathbf{T},$$

then \mathbf{B} is similar to \mathbf{A} (has same eigenvalues). If \mathbf{B} is diagonal

$$\mathbf{B} = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & \lambda_m \end{pmatrix},$$

then

$$\mathbf{T} = [\mathbf{x}_1 \,|\, \mathbf{x}_2 \,|\, \cdots \,|\, \mathbf{x}_m],$$

and \mathbf{A} is called diagonalizable.

Note 2. Any symmetric matrix is diagonalizable by an orthogonal matrix \mathbf{T} (i.e., $\mathbf{T}^{-1} = \mathbf{T}^T$).

TECHNICAL POINTS:

• An orthogonal similarity matrix can only generally bring a matrix to an upper triangular form:

Eigenvalues are still on the diagonal!

• For general **A**, there is always a similarity transformation that takes **A** to a Jordan canonical form **B**, where

$$\mathbf{B} = \begin{bmatrix} \mathbf{\Lambda}_1 & & & \\ & \mathbf{\Lambda}_2 & & \\ & & \ddots & \\ & & & \mathbf{\Lambda}_s \end{bmatrix}, \quad s \leq m,$$

 $\quad \text{and} \quad$

$$\mathbf{\Lambda}_{i} = \begin{bmatrix} \lambda_{i} & 1 & & \\ & \lambda_{i} & \ddots & \\ & & \ddots & 1 \\ & & & \lambda_{i} \end{bmatrix}, \quad \sum_{i=1}^{s} \dim(\mathbf{\Lambda}_{i}) = m.$$

2.2 Linear constant-coefficient systems

$$\begin{split} \dot{y} &= \lambda y \qquad \dot{\mathbf{y}} = \mathbf{A} \mathbf{y} \\ \downarrow \qquad \qquad \downarrow \\ y(t) &= e^{\lambda t} y(0) \qquad \mathbf{y}(t) = e^{t\mathbf{A}} \mathbf{y}(0) \end{split}$$

with $\mathbf{A} = m \times m$ constant matrix.

Note 3. $e^{t\mathbf{A}} = \mathbf{I} + (t\mathbf{A}) + \frac{(t\mathbf{A})^2}{2!} + \frac{(t\mathbf{A})^3}{3!} + \cdots$

Suppose A is diagonalizable.

$$\Rightarrow \exists \mathbf{T} \text{ s.t. } \mathbf{T}^{-1} \mathbf{A} \mathbf{T} = \mathbf{\Lambda} = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \ddots & \\ & & & & \lambda_m \end{bmatrix}$$

Change variables:

$$\mathbf{w} = \mathbf{T}^{-1}\mathbf{y}.$$

Then

$$\dot{\mathbf{w}} = \mathbf{\Lambda}\mathbf{w}.$$

 \rightarrow decoupled system ! $\dot{w}_i = \lambda_i w_i$

 \rightarrow Stability of ${\bf w}$ (and hence ${\bf y})$ determined by eigenvalues of ${\bf A}.$

- All $\mathcal{R}e(\lambda_i) < 0$ asymptotically stable
- All $\mathcal{R}e(\lambda_i) \leq 0$ stable
- One (or more) $\mathcal{R}e(\lambda_i) > 0$ unstable

TECHNICAL NOTE: What if \mathbf{A} is <u>not</u> diagonalizable? Then we have a Jordan form

$$\mathbf{T}^{-1}\mathbf{A}\mathbf{T} = \left[egin{array}{ccc} \mathbf{\Lambda}_1 & & & \ & \mathbf{\Lambda}_2 & & \ & & \mathbf{\Lambda}_s \end{array}
ight],$$

where

$$oldsymbol{\Lambda}_i = \left[egin{array}{cccc} \lambda_i & 1 & & \ & \lambda_i & \ddots & \ & & \ddots & 1 \ & & & \lambda_i \end{array}
ight].$$

In this case, stable \Leftrightarrow each λ_i satisfies either $\mathcal{R}e(\lambda_i) < 0$, or $\mathcal{R}e(\lambda_i) = 0$ and λ_i is simple.

asymptotically stable \Leftrightarrow all λ_i satisfy $\mathcal{R}e(\lambda_i) < 0$.

Example 1. (Vibrating spring, again)

$$-\ddot{u} + u = 0.$$

As a first-order system

$$\dot{\mathbf{y}} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \mathbf{y}, \quad \mathbf{y} = \begin{pmatrix} u \\ \dot{u} \end{pmatrix}. \quad (verify!)$$
Eigenvalues of $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$: $\lambda_1 = -1, \ \lambda_2 = 1.$
(verify!)

Problem is unstable !

Example 2. (General homogeneous constant-coefficient scalar ODE)

$$a_k u + a_{k-1} \dot{u} + \dots + a_0 u^{(k)} = 0, \quad a_0 > 0,$$

or

$$\sum_{j=0}^{k} a_j \frac{d^{k-j}}{dt^{k-j}} u = 0.$$

 \rightarrow convert to first order, or guess $y = e^{\lambda t}$.

Either way, λ satisfies the characteristic polynomial

$$\phi(\lambda) = a_0 \lambda^k + a_1 \lambda^{k-1} + \dots + a_k = 0.$$

 $\Rightarrow Solution is stable iff all <math>\lambda$ satisfy either $\mathcal{R}e(\lambda) < 0$, or $\mathcal{R}e(\lambda) = 0$ and λ is simple.

Asymptotically stable iff all λ satisfy $\mathcal{R}e\lambda < 0$.

2.3 Linear, variable-coefficient systems

$$\dot{\mathbf{y}} = \mathbf{A}(t)\mathbf{y} + \mathbf{q}(t)$$

Now eigenvalues are irrelevant !!

Example 3.

$$\dot{y} = (\cos t)y$$

Eigenvalue: $\lambda(t) = \cos t \rightarrow \text{ sometimes positive.}$

Solution
$$y(t) = e^{\sin t} y(0)$$

 $\rightarrow ||y(t)|| < e||y(0)||$ problem is stable (verify)

More can be said for periodic $\mathbf{A}(t)$; i.e., $\exists T > 0$ such that $\mathbf{A}(t+T) = \mathbf{A}(t)$. \rightarrow Floquet–Lyapunov theory

2.4 Nonlinear problems

For nonlinear problems, stability depends on which specific solution trajectory is considered!

Given an isolated solution y(t), ODE can be linearized about y(t), then analyse stability of perturbations.

 $\begin{array}{lll} \text{Let } \mathbf{y}(t) \text{ solve } & \dot{\mathbf{y}} = \mathbf{f}(t,\mathbf{y}), \quad \mathbf{y}(0) = \mathbf{y}_0, \\ \text{Let } \hat{\mathbf{y}}(t) \text{ solve } & \dot{\hat{\mathbf{y}}} = \mathbf{f}(t,\hat{\mathbf{y}}), \quad \hat{\mathbf{y}}(0) = \hat{\mathbf{y}}_0, \\ & \hat{\mathbf{y}}_0 \text{ close to } \mathbf{y}_0. \end{array}$

Then because $\mathbf{f}(t, \hat{\mathbf{y}}) \approx \mathbf{f}(t, \mathbf{y}) + \frac{\partial \mathbf{f}}{\partial \mathbf{y}}(\hat{\mathbf{y}} - \mathbf{y})$, we look at the linear variational equation

 $\dot{\mathbf{z}} = \mathbf{A}(t, \mathbf{y})\mathbf{z},$ $\mathbf{z} = \hat{\mathbf{y}} - \mathbf{y},$ (perturbation)

where $\mathbf{A}(t, \mathbf{y}) = \frac{\partial \mathbf{f}}{\partial \mathbf{y}}(t, \mathbf{y})$ is called the Jacobian.

Example 4. Often, we are interested in the stability of equilibria or steady-state solutions;

i.e., when $\dot{\mathbf{y}} = \mathbf{f}(t, \mathbf{y}) = \mathbf{0}$.

Consider $\dot{y} = y(1 - y)$ (model of logistic growth) Equilibria: y = 0 and y = 1Jacobian: $\mathbf{A} = \frac{\partial \mathbf{f}}{\partial \mathbf{y}} = 1 - 2y$

When y = 0, $\mathbf{A} = 1 > 0$, solution is unstable. When y = 1, $\mathbf{A} = 1 - 2(1) = -1 < 0$, solution is stable.

 \rightarrow Solutions with y(0) = c with $0 < c \ll 1$ are repelled from y = 0 and are attracted to y = 1.

Exercise: use Matlab's ode45 to verify this.