CHAPTER 2: On problem stability

Stability: small changes to input

4

small changes to output

But other definitions possible, depending on context.



2.1 Test equation (Dahlquist)

Y
A = constant  (possibly complex !)

)

eigenvalues of a matrix

Solution for initial condition y(0):

Difference:

ly®) =gl = [I(y(0) — 5(0))e™|
= [ly(0) — g(0)[|e! RV



Verify:

He)\tH _ 6(ReA)t

Pretend:

y(t) ‘“exact solution”

y(t) solution to problem with perturbed ICs

ReA < 0: difference bounded (stable)

ReX < 0: difference decays (asymptotically stable)
ReX > 0: difference unbounded (unstable)

e Technical point: The solution y(t) toy = f(t,y) is
stable if for all e > 0, there is a 6 > 0 such that if
y(t) satisfies the ODE and ||y (0) —y(0)|| < 6 then

ly(t) —y(t)|| <e forallt>D0.

Asymptotically stable = stable + ||y (¢) —¥y(¢)|| — 0
as t — oo.



Example 1.
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Review: eigenvalues (of a real m x m matrix A)

e Definition: \ is an eigenvalue (scalar, complex)
and x # 0 is an eigenvector (up to scaling factor)
if Ax = \x.

Note 1. )\ is real if A is symmetric (A = A1),

e Similarity transformation: If 4 T nonsingular such
that
B =T AT,
then B is similar to A (has same eigenvalues).
If B is diagonal

A O 0
B _ 0 .)\2 | 0 |
0 0 A\,
then
T=[xi[x2] - [xm],

and A is called diagonalizable.



Note 2. Any symmetric matrix is diagonalizable by
an orthogonal matrix T (i.e., T=1 =T7T).

TECHNICAL POINTS:

e An orthogonal similarity matrix can only generally
bring a matrix to an upper triangular form:

*

* K X K

Eigenvalues are still on the diagonal!



e For general A, there is always a similarity
transformation that takes A to a Jordan canonical

form B, where

AL _
B = Az , 8§ < m,
- AS —
and
1 ]
\i —~ ..
A; = E ) dim(A;) =m
)\. 1 =1




2.2 Linear constant-coefficient systems

Y= Ay y = Ay
1 1
y(t) = eMy(0)  y(t) = e*y(0)

with A = m X m constant matrix.

Note 3. ¢4 _I+(tA)+(t )’ +(tA)3+ .

Suppose A is diagonalizable.

= 3Tst. T 'AT=A =

Change variables:

Then



— decoupled system | W; = AW

— Stability of w (and hence y) determined by
eigenvalues of A.

o All Re(X;) <0 asymptotically stable
o All Re(N\;) <0 stable

o One (or more) Re(A;) >0  unstable

TECHNICAL NOTE: What if A is not diagonalizable?
Then we have a Jordan form

A,
T 'AT = 5 ,




where

p—

In this case,
stable < each \; satisfies either Re()\;) < 0,
or Re(A;) =0 and ); is simple.

asymptotically stable < all \; satisfy Re(\;) < 0.

Example 1. (Vibrating spring, again)

—u+u=0.

As a first-order system

sz(? é)y, y=(g)- (verify!)

Eigenvalues of A = ( (1) (1) ) A = =1, Ay = 1.

(verify!)

Problem is unstable !



Example 2. (General homogeneous constant-coefficient
scalar ODE)

artt + ap_1u + -+ - + aou(k) =0, ag>0,

or
k

dF—J
Z aj—dtk—ju =0
§=0

— convert to first order, or guess y = et

Either way, \ satisfies the characteristic polynomial
d(A) = ap\* + a1 A"+ 4 ap = 0.

= Solution is stable iff all \ satisfy either
Re(N\) <0, or Re(A) =0 and X\ is simple.

Asymptotically stable iff all A satisfy Re\ < 0.



2.3 Linear, variable-coefficient systems

y =A({)y +q(t)
Now eigenvalues are irrelevant !!

Example 3.
y = (cost)y
Eigenvalue: \(t) = cost — sometimes positive.

Solution y(t) = ey (0)
—  |ly(®)|| < elly(0)|| problem is stable (verify)

More can be said for periodic A(t),
ie., 3T >0 such that A(t+T) = A(t).
— Floquet—Lyapunov theory



2.4 Nonlinear problems

For nonlinear problems, stability depends on which
specific solution trajectory is considered!

Given an isolated solution y (%),
ODE can be linearized about y (%),
then analyse stability of perturbations.

Let y(¢) solve  y=1£(t,y), y(0)=yo.
Let y(t) solve y=1(t,y), y(0)=yo,
Yo close to yy.

Then because f(t,y) = f(t,y) + g—}f,(jf —y),
we look at the linear variational equation

z = A(t,y)z,

A

z = y—y, (perturbation)

where A(t,y) = g—i(t,y) is called the Jacobian.



Example 4. Often, we are interested in the stability
of equilibria or steady-state solutions;
i.e., when y =f(t,y) =0.

Consider vy =y(1 —y) (model of logistic growth)
Equilibria: y=0 and y=1

Jacobian: A = g—; =1—-2y

When y =0, A =1 > 0, solution is unstable.
When y = 1,A =1 —2(1) = —1 < 0, solution is
stable.

— Solutions with y(0) = ¢ with 0 < ¢ < 1 are repelled
from y = 0 and are attracted toy = 1.



