
CHAPTER 2: On problem stability

Stability: small changes to input
⇓

small changes to output

But other definitions possible, depending on context.



2.1 Test equation (Dahlquist)

ẏ = λy
λ = constant (possibly complex !)

l
eigenvalues of a matrix

Solution for initial condition y(0):

y(t) = eλty(0), t ≥ 0. (verify!)

For initial condition ỹ(0):

ỹ(t) = eλtỹ(0), t ≥ 0.

Difference:

‖y(t)− ỹ(t)‖ = ‖
(
y(0)− ỹ(0)

)
eλt‖

= ‖y(0)− ỹ(0)‖e(Reλ)t



Verify:
‖eλt‖ = e(Reλ)t

Pretend:

y(t) “exact solution”

ỹ(t) solution to problem with perturbed ICs

Reλ ≤ 0 : difference bounded (stable)
Reλ < 0 : difference decays (asymptotically stable)
Reλ > 0 : difference unbounded (unstable)

• Technical point: The solution y(t) to ẏ = f(t,y) is
stable if for all ε > 0, there is a δ > 0 such that if
ŷ(t) satisfies the ODE and ‖y(0)− ŷ(0)‖ ≤ δ then

‖y(t)− ŷ(t)‖ ≤ ε for all t ≥ 0.

Asymptotically stable = stable + ‖y(t)− ŷ(t)‖ → 0
as t→∞.



Example 1.





Review: eigenvalues (of a real m×m matrix A)

• Definition: λ is an eigenvalue (scalar, complex)
and x 6= 0 is an eigenvector (up to scaling factor)

if Ax = λx.

Note 1. λ is real if A is symmetric (A = AT ).

• Similarity transformation: If ∃ T nonsingular such
that

B = T−1AT,

then B is similar to A (has same eigenvalues).
If B is diagonal

B =


λ1 0 · · · 0
0 λ2 · · · 0
... . . . . . . ...
0 · · · 0 λm

 ,

then
T = [x1 |x2 | · · · |xm],

and A is called diagonalizable.



Note 2. Any symmetric matrix is diagonalizable by
an orthogonal matrix T (i.e., T−1 = TT ).

TECHNICAL POINTS:

• An orthogonal similarity matrix can only generally
bring a matrix to an upper triangular form:

∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗

.

Eigenvalues are still on the diagonal!



• For general A, there is always a similarity
transformation that takes A to a Jordan canonical
form B, where

B =


Λ1

Λ2
. . .

Λs

 , s ≤ m,

and

Λi =


λi 1

λi . . .
. . . 1

λi

 , s∑
i=1

dim(Λi) = m.



2.2 Linear constant-coefficient systems

ẏ = λy ẏ = Ay
↓ ↓

y(t) = eλty(0) y(t) = etAy(0)

with A = m×m constant matrix.

Note 3. etA = I + (tA) + (tA)2

2! + (tA)3

3! + · · ·

Suppose A is diagonalizable.

⇒ ∃ T s.t. T−1AT = Λ =


λ1

λ2
. . .

λm

 .
Change variables:

w = T−1y.

Then
ẇ = Λw.



→ decoupled system ! ẇi = λiwi

→ Stability of w (and hence y) determined by
eigenvalues of A.

• All Re(λi) < 0 asymptotically stable

• All Re(λi) ≤ 0 stable

• One (or more) Re(λi) > 0 unstable

TECHNICAL NOTE: What if A is not diagonalizable?
Then we have a Jordan form

T−1AT =


Λ1

Λ2
. . .

Λs

 ,



where

Λi =


λi 1

λi . . .
. . . 1

λi

 .
In this case,
stable ⇔ each λi satisfies either Re(λi) < 0,

or Re(λi) = 0 and λi is simple.

asymptotically stable ⇔ all λi satisfy Re(λi) < 0.

Example 1. (Vibrating spring, again)

−ü+ u = 0.

As a first-order system

ẏ =

(
0 1
1 0

)
y, y =

(
u
u̇

)
. (verify!)

Eigenvalues of A =

(
0 1
1 0

)
: λ1 = −1, λ2 = 1.

(verify!)

Problem is unstable !



Example 2. (General homogeneous constant-coefficient
scalar ODE)

aku+ ak−1u̇+ · · ·+ a0u
(k) = 0, a0 > 0,

or
k∑
j=0

aj
dk−j

dtk−j
u = 0.

→ convert to first order, or guess y = eλt.

Either way, λ satisfies the characteristic polynomial

φ(λ) = a0λ
k + a1λ

k−1 + · · ·+ ak = 0.

⇒ Solution is stable iff all λ satisfy either
Re(λ) < 0, or Re(λ) = 0 and λ is simple.

Asymptotically stable iff all λ satisfy Reλ < 0.



2.3 Linear, variable-coefficient systems

ẏ = A(t)y + q(t)

Now eigenvalues are irrelevant !!

Example 3.
ẏ = (cos t)y

Eigenvalue: λ(t) = cos t → sometimes positive.

Solution y(t) = esin ty(0)

→ ‖y(t)|| < e||y(0)‖ problem is stable (verify)

More can be said for periodic A(t);
i.e., ∃ T > 0 such that A(t+ T ) = A(t).

→ Floquet–Lyapunov theory



2.4 Nonlinear problems

For nonlinear problems, stability depends on which
specific solution trajectory is considered!

Given an isolated solution y(t),
ODE can be linearized about y(t),
then analyse stability of perturbations.

Let y(t) solve ẏ = f(t,y), y(0) = y0,
Let ŷ(t) solve ˙̂y = f(t, ŷ), ŷ(0) = ŷ0,

ŷ0 close to y0.

Then because f(t, ŷ) ≈ f(t,y) + ∂f
∂y(ŷ − y),

we look at the linear variational equation

ż = A(t,y)z,

z = ŷ − y, (perturbation)

where A(t,y) = ∂f
∂y(t,y) is called the Jacobian.



Example 4. Often, we are interested in the stability
of equilibria or steady-state solutions;
i.e., when ẏ = f(t,y) = 0.

Consider ẏ = y(1− y) (model of logistic growth)
Equilibria: y = 0 and y = 1
Jacobian: A = ∂f

∂y = 1− 2y

When y = 0,A = 1 > 0, solution is unstable.
When y = 1,A = 1 − 2(1) = −1 < 0, solution is
stable.

→ Solutions with y(0) = c with 0 < c� 1 are repelled
from y = 0 and are attracted to y = 1.

Exercise: use Matlab’s ode45 to verify this.


