
CHAPTER 3: Basic methods,

basic concepts

Concentrate on 3 methods

• Forward Euler, (or just Euler’s method)

• Backward Euler, (a.k.a. implicit Euler)

• Trapezoidal, (a.k.a. implicit mid-point)

for solving IVPs

ẏ = f(t,y), 0 ≤ t ≤ tf ,
y(0) = y0,

• Assume unique solution and as many bounded
derivatives as needed.

• Can think in terms of scalar ODE,
but vector interpretation often possible.

1

3.1 Forward Euler

Imagine discretizing [0, tf] by a mesh

Define ∆tn = tn − tn−1, nth step size,
(size of interval n)
n = 1, 2, . . . , N ,

we then compute

IC = y0,y1,y2, · · · ,yN−1,yN ,

where
yn ≈ y(tn).

→ Given only y0, generate y1,y2, · · · .

2

Review: Order notation

We often describe computational errors as a function
of ∆t as ∆t→ 0 (∆t > 0).

Definition 1.

d = O((∆t)p)

if ∃ p, C > 0 such that ∀∆t > 0 sufficiently small,

‖d‖ ≤ C(∆t)p.

Typically, we are interested in the largest p for which
this is true; i.e.,

→ ‖d‖
(∆t)p

≈ C ↔ ‖d‖ decreases like (∆t)p as ∆t→ 0+.

3

In estimating computational complexity, we assume
N = O(1

∆t), N →∞.
e.g.,

w = O(N logN)

⇒ ∃ C such that

w ≤ CN logN as N →∞.

Consider Taylor’s expansion:

y(tn) = y(tn−1) + ∆tnẏ(tn−1) +
1

2!
(∆tn)2ÿ(tn−1) + · · ·

= y(tn−1) + ∆tnẏ(tn−1) +O((∆tn)2).

Assuming O((∆tn)2) can be neglected ...

yn = yn−1 + ∆tnf(tn−1,yn−1).

This is forward Euler !

4

Note 1. • This is a explicit method:
yn is given as an explicit function of past y values.

• This is a one-step method:
The only quantities that appear are yn−1,yn.

• It has a nice geometric interpretation:

Follow tangent line at (tn−1,yn−1) for a horizontal
distance ∆tn.
Repeat as desired.

5

3.2 Convergence, Accuracy, Consistency,
0-stability

Rewrite forward Euler

yn − yn−1

∆tn
− f(tn−1,yn−1) = 0.

Define

Nhu(tn) ≡ u(tn)− u(tn−1)

∆tn
− f(tn−1,u(tn−1))

for any function u(t) defined at the mesh points
{tn}Nn=0 with u(t0) given.

Consider a function yh(t) (mesh function)
such that yh(tn) = yn.

Clearly, Nhyh(tn) = 0.

6

Define local truncation error

dn = Nhy(tn).

This is the amount by which the true solution fails to
satisfy the difference equation.

↔ Measures how closely the difference operator
approximates the differential operator.

A difference method is consistent (or accurate) of order
p if

dn = O((∆tn)p)

for a positive integer p.

For forward Euler,

dn =
∆tn

2
ÿ(tn) +O((∆tn)2). (verify !)

→ Forward Euler is accurate of order 1.

7

It is easy to design difference approximations to
be consistent. But the property we really want is
convergence ↔ consistency over many steps.

Let
∆t = max

1≤n≤N
∆tn

and assume N∆t is bounded independent of N .

A difference method is convergent of order p if the
global error en = y(tn) − yn, e0 = 0 satisfies
en = O((∆t)p) for n = 1, 2, . . . , N .

Note 2. The order of consistency and convergence
do not have to be equal.

We would like to assume they are.

For that, we need the concept of 0-stability.
↑

zero

8

Definition 2. A difference method is 0-stable if
∃ ∆t0,K > 0 such that for any mesh functions xh, zh
with ∆t ≤ ∆t0

‖xn−zn‖ ≤ K{‖x0−z0‖+ max
1≤j≤n

‖Nhxh(tj)−Nhzh(tj)‖},

1 ≤ n ≤ N .

xn ↔ Method in question to produce yn.

zn ↔ Method in question with perturbed initial condition.

→ Analogous to stability of differential equation.

0-stability ↔ Stability of difference equation.

→ Concept has limited use in proofs.
→ Tricky to directly prove forward Euler is 0-stable.

Theorem 1. Consistency + 0-stability⇒ Convergence
order p order p

‖en‖ ≤ K max
1≤j≤n

‖dj‖ = O((∆t)p).

9

→ As an error bound, this is very pessimistic and
cannot be used for practical error estimation.

• Another related error measure is the local error
↑

the error made at each step
Let

˙̄y(t) = f(t, ȳ(t)),

ȳ(tn−1) = yn−1.

Then the local error is

ln = ȳ(tn)− yn.

Usually, ‖dn‖ = ‖Nhȳ(tn)‖+O((∆t)p+1),

and ∆tn‖Nhȳ(tn)‖ = ‖ln‖
(
1 +O(∆tn)

)
.

→ ∆tndn, ln are closely related !

10

3.3 Absolute stability

Recall the test equation:

ẏ = λy (scalar)

λ− complex

y(0) = y0 > 0 (for convenience)

Exact solution: y(tn) = eλtny0.

Consider forward Euler with fixed step size ∆tn = ∆t:

yn = yn−1 + ∆tλyn−1

= (1 + ∆tλ)yn−1

...

= (1 + ∆tλ)ny0

11

Three cases :

• Reλ > 0 : ‖y(t)‖ = y0e
(Reλ)t →∞ as t→∞.

→ Problem is unstable.
If e(Reλ)tf is not too large, we can compute
meaningful solutions in a relative sense.

• Reλ = 0: distance between solution curves is
constant.

• Reλ < 0 : ‖y(t)‖ = y0e
(Reλ)t → 0 as t→∞.

Solution is asymptotically stable.
→ Absolute stability requirement:

‖yn‖ ≤ ‖yn−1‖, n = 1, 2, · · · .

Definition 3. The region of absolute stability of a
numerical method is the region in the complex z-plane
where

‖yn‖ ≤ ‖yn−1‖
for the test equation ẏ = λy and z = λ∆t.

12

Example 1. For forward Euler,

‖yn‖ ≤ ‖yn−1‖ ⇒ |1 + ∆tλ| ≤ 1

⇒ |1 + z| ≤ 1.

↓
circle centred (−1, 0) and radius 1

Suppose λ is a real negative number.
Then for stability, we must restrict ∆t such that

∆t ≤ 2
−λ. (verify)

Exercise: For λ = −200, use forward Euler to solve
ẏ = λy, y(0) = 1 with ∆t = 0.011, 0.0099, 0.0049
for 100 steps each compare with the exact answer.
Comment on the difference between the last 2
solutions.

13

The absolute stability restriction is a stability restriction
NOT an accuracy restriction !

e.g. If y0 = 10−15, then the approximation yn ≡ 0
never has error larger than 10−15.
Because roundoff errors inevitably occur, if you use
a stepsize ∆t outside of the stability region, the
numerical solution will blow up !

• For systems of linear, constant-coefficient equations,
the stability restriction is given by the eigenvalue
with the most negative real part.

14

3.4 Stiffness and Backward Euler

Important rule of thumb:

We want to choose ∆tn based on accuracy
requirements NOT stability requirements.

When we cannot do this the problem is called stiff.

What does this mean ?

• A given tolerance (accuracy) requires a certain

∆t
(1)
n .

• Stability restriction also imposes a certain ∆t
(2)
n .

• For stiff problems, ∆t
(2)
n � ∆t

(1)
n ;

i.e., you get much more accuracy than you ask for.

What’s wrong with that ? It’s not for free !

15

Example 2.

ẏ = −100(y − sin t), t ≥ 0,

y(0) = 1.

Rapid variation at beginning requires small step. But
later, solution is smooth, so we would like to take a
large step.

Other scientists and engineers try to quantify stiffness
in terms of multiple scales; i.e., eigenvalues (time
constants) have widely differing values.

Then ∆tn is restricted by the transients, even after
they have died off !

16

The best way to understand stiffness is in a qualitative
sense:

Stiffness is characterized in terms of the behaviour
of an explicit method (like forward Euler) on a given
problem.

An IVP is stiff in some interval [0, tf] if the stepsize
needed to maintain stability is much smaller than that
needed to meet the accuracy requirements.

Note 3. Stiffness depends on

• the IVP (DE, ICs, [0, tf]),

• the accuracy requirement,

• the absolute stability region of the method.

→ If the tolerance is small enough, no problem is stiff!

Example 2 is stiff after about t = 0.03.

17

3.4.1 Backward Euler

We would like a method with a nice absolute stability
region so that we can take a large ∆t even when the
problem is stiff.

Such a method is backward Euler.

It can be derived like forward Euler, but with Taylor
expansions about t = tn.

This leads to:

yn = yn−1 + ∆tnf(tn,yn).

Note 4. • This is a first-order method. (verify)

• Geometrically, the tangent is drawn from the future
point (tn,yn).

18

• It is an implicit method.
→ The unknown yn is on both sides of the equation.
So we need to solve a nonlinear system of equations
at each step.
→ Each step costs more than a forward Euler step.

• Stability region: applying backward Euler to ẏ = λy,

yn = yn−1 + λ∆tyn,

⇒ yn =
yn−1

1− λ∆t
.

1
1−λ∆t is the amplification factor for backward Euler.(

Recall: for forward Euler, it was (1 + λ∆t).
)

For ∆t > 0 and Re(λ) ≤ 0, we have

1

|1− λ∆t|
≤ 1.

→ This method is unconditionally stable !

19

20

3.4.2 Solving nonlinear equations

For any implicit method, equations need to be solved
at every step.

(Not a recipe anymore !)

If the equations are linear, specialized techniques may
be used (e.g., Gauss elimination).

Usually the equations are nonlinear.

We will discuss two methods:

• Functional (or fixed-point) iteration

• Newton iteration

21

• Functional iteration
Guess y

(0)
n = yn−1,

then iterate

y(ν+1)
n = yn−1 + ∆tnf(tn,y

(ν)
n) ν = 0, 1, 2,

Advantage: simple !

Disadvantage: Theory tells us that for functional
iteration to converge, we must have

∆t

∥∥∥∥∂f∂y
∥∥∥∥ < 1.

But for stiff problems ‖∂f∂y‖ is large.

→ You have to make ∆t small !
(This defeats the purpose !)

Functional iteration is used for implicit (predictor-
corrector) methods applied to non-stiff problems.

22

Example 3.

ẏ = λ

(
ty2 − 1

t

)
− 1

t2
, t > 1,

y(1) = 1, λ < 0.

Exact solution: y(t) = 1
t .

Apply backward Euler:

yn = yn−1 + ∆tn

[
λ

(
tny

2
n −

1

tn

)
− 1

t2n

]
.

Solve this equation by functional iteration:

y(ν+1)
n = yn−1 + ∆tn

[
λ

(
tn(y(ν)

n)2 − 1

tn

)
− 1

t2n

]
,

ν = 0, 1,

Under what conditions will this iteration converge
rapidly?

23

Define the error at iteration (ν + 1) to be

ε(ν+1)
n = yn − y(ν+1)

n .

Then ε(ν+1)
n = ∆tnλtn

(
y2
n − (y(ν)

n)2
)

(verify)

= ∆tnλtn
(
yn + y(ν)

n

)
ε(ν)
n

≈ 2∆tnλε
(ν)
n .

(
use yn ≈ y(ν)

n ≈ 1

tn
.

)
→ Iteration will converge if

|2∆tnλ| < 1 or ∆tn <
1

2|λ|
.

e.g., if λ = −500, ∆tn < 0.001.

Stepsize will likely be restricted due to stability, not
accuracy !

→ We don’t want that !

24

• Newton iteration (some review !)

For a scalar nonlinear equation

g(x) = 0,

given an initial guess x0,
we produce a sequence of iterates

x(ν+1) = x(ν) − g(x(ν))

g′(x(ν))
, ν = 1, 2,

For a system of nonlinear equations,

g(x) = 0,

this generalizes to

x(ν+1) = x(ν)−
[∂g
∂x

∣∣∣
x=x(ν)

]−1

g(x(ν)), ν = 1, 2,

Note 5. It is bad practice to compute inverses!

25

Instead solve the linear system for the update δ(ν):

∂g

∂x

∣∣∣
x=x(ν)

δ(ν) = −g(x(ν)),

then update: x(ν+1) = x(ν) + δ(ν).

Variants of Newton’s method are used in virtually
all modern stiff ODE codes.

For backward Euler,

g(yn) = yn − yn−1 −∆tnf(tn,yn) = 0,

leading to the Newton iteration

y
(ν+1)
n = y

(ν)
n

−
[
I−∆tn

∂f
∂y

]−1

y=y
(ν)
n

(
y

(ν)
n −yn−1−∆tnf(tn,y

(ν)
n)
)
,

ν = 0, 1, 2,

[
I−∆tn

∂f
∂y

]
y=y

(ν)
n

: iteration matrix

26

The cost of forming and solving the linear systems
(for δ(ν)!) is the dominant cost in an implicit solver.

We will iterate until

‖y(ν+1) − y(ν)‖ ≤ NTOL.

NTOL: specified by the user,
well above roundoff error.

We can take as initial guess

y(0)
n = yn−1.

→ It is sometimes possible to do better.

Because this is such a good guess, convergence can
occur in only a few Newton iterations.
Software can be designed so that if convergence
does not occur quickly, ∆tn can be decreased.

27

– Many other tricks go into practical Newton codes;
e.g., damped Newton

x(ν+1) = x(ν)+ ρ δ(ν), 0 < ρ ≤ 1.
Frozen Jacobian:
→ do not update ∂f

∂y at each iteration (or even

each step !)
Then each iteration costs O(m2), not O(m3).
Review: Matrix decompositions !

– Approximating the Jacobian matrix
In real applications, ODE systems are often large
and complicated.
This makes the computation of ∂f

∂y a difficult and
error-prone task.
A convenient technique is to use difference
approximations to automate this process.

Given y(ν), perturb one component as follows
ŷj = yj + ε, ỹj = yj − ε, 0 < ε� 1.

Evaluate f̂ = f(tn, ŷ), f̃ = f(tn, ỹ).

28

Then the jth column of ∂f
∂y is approximated by

∂f

∂yj
≈ 1

2ε
(f̂ − f̃).

– How do you choose ε ?
If computer has 2d significant digits,
choose ε = 10−d

e.g., a good choice in double precision is
ε = 10−7

Note 6. – This strategy is not foolproof !

– It may be very expensive
(especially if ∂f

∂y has many zeros (sparse)).

– More sophisticated and reliable software exists
→ Basic question: How to choose ε.
Also automatic differentiation software.

– Most general-purpose software has an option for
finite-difference Jacobians.

– Good as a check for obvious programming errors!

29

3.5 A-Stability and Stiff Decay

The perfect world: the numerical method mimics all
properties of the DE for all DEs.

The real world: methods that capture essential
properties for a class of DEs.

For all stable solutions to the test equation,

|y(tn)| ≤ |y(tn−1)|.

→ Numerical method should satisfy

|yn| ≤ |yn−1|.

This leads to the concept of A-stability.

30

Definition 4. A numerical method is A-stable if its
region of absolute stability contains the entire left-half
of the complex z-plane (z = λ∆t).
e.g., backward Euler is A-stable.

But there are two problems with this definition:

• No distinction made between cases

Re(λ)� −1

and

−1� Re(λ) ≤ 0, |Im(λ)| � 1.

The latter cases gives rise to a highly oscillatory
exact solution that does not decay much.
→ This has not mattered to us so far.

31

• In the stiff limit Re(λ)� −1,

|y(tn)| � |y(tn−1)|.

But absolute stability only requires

|yn| ≤ |yn−1|.

This is too weak sometimes !

In particular, it allows |yn| ≈ |yn−1|.

Consider a sightly generalized test problem

ẏ = λ(y − g(t)),

where g(t) is bounded, but otherwise arbitrary.

Rewrite as εẏ = λ̂(y−g(t)), where ε = 1
|Re(λ)|, λ̂ = ελ.

When ε = 0, we get the reduced solution y(t) = g(t).

32

A numerical method has stiff decay if for fixed tn > 0,

|yn − g(tn)| → 0 as ∆tnRe(λ)→ −∞.

This is a stronger requirement than absolute stability
in the very stiff limit; it is not concerned with other
parts of complex z-plane.

→ Skips transient phase but gives good description of
long-term (slowly varying !) behaviour.
Potential for efficient use, but danger for misuse !

Backward Euler has stiff decay:

yn−g(tn) =
yn − g(tn)

1− λ∆tn
→ 0 as ∆tnRe(λ)→ −∞.

With ∆tn ≡ 0.1, on Example 2:

ẏ = −100(y − sin t), t ≥ 0,

y(0) = 1,

33

we get

34

3.6 Symmetry and Trapezoidal Method

Forward Euler is based on Taylor expansion at tn−1.
Backward Euler is based on Taylor expansion at tn.

Both are first-order accurate.
→ Generally too inefficient in practice.

Better accuracy obtained by centering expansions at

tn−1
2

= tn−1 +
∆tn

2
.

y(tn) = y

(
t
n−1

2

)
+

∆tn

2
ẏ

(
t
n−1

2

)
+

(∆tn)2

8
ÿ

(
t
n−1

2

)
+

(∆tn)3

48

...
y

(
t
n−1

2

)
+ · · ·

y(tn−1) = y

(
t
n−1

2

)
−

∆tn

2
ẏ

(
t
n−1

2

)
+

(∆tn)2

8
ÿ

(
t
n−1

2

)
−

(∆tn)3

48

...
y

(
t
n−1

2

)
+ · · ·

(verify)

Subtract and divide by ∆tn:

y(tn)− y(tn−1)

∆tn
= ẏ

(
t
n−1

2

)
+

(∆tn)2

24

...
y

(
t
n−1

2

)
+O((∆tn)

4
). (verify)

35

But

ẏ

(
t
n−1

2

)
=

1

2

[
ẏ(tn)+ẏ(tn−1)

]
−

(∆tn)2

8

...
y

(
t
n−1

2

)
+O((∆tn)

4
). (verify)

This yields the (implicit) trapezoidal method:

yn = yn−1 +
∆tn

2

[
f(tn,yn) + f(tn−1,yn−1)

]
.

Note 7. • This is an implicit method.

• It is second-order accurate.

• It is symmetric:
→ If you change t = −τ

l
integrate from right to left on [tn−1, tn],

the answer does not change !

36

More formally, consider a general numerical method

yn = yn−1 + ∆tnψ(yn−1,yn; ∆tn).

e.g., for trapezoidal method,

ψ = 1
2

[
f(tn−1,yn−1) + f(tn,yn)

]
.

A method is symmetric if it is invariant under the
transformation

yn → yn−1, yn−1 → yn, ∆tn → −∆tn,

tn → tn−1, tn−1 → tn.

→ Important for reversible flows.
l

e.g., energy-conserving.

Transform trapezoidal rule:

yn−1 = yn −∆tn

[1
2

(
f(tn−1,yn−1) + f(tn,yn)

)]
.

Rearrange to get the original rule ! (verify)

37

• Trapezoidal method is 0-stable.

• Check absolute stability:

yn =
2 + λ∆tn
2− λ∆tn

yn−1. (verify)

If Re(λ) > 0,
∣∣∣2+λ∆tn
2−λ∆tn

∣∣∣ > 1. A-stable in exactly

If Re(λ) ≤ 0,
∣∣∣2+λ∆tn
2−λ∆tn

∣∣∣ ≤ 1. the left-hand plane.

38

• What about stiff decay ?

lim
∆tnRe(λ)→−∞

2 + λ∆tn
2− λ∆tn

= −1 6= 0.

⇒ No stiff decay. (typical of symmetric methods)

→ Solution is basically oscillatory

yn ≈ −yn−1.

• Example 5. Solve Example 2 with trapezoidal rule.

39

3.7 Non-smooth Problems

We usually assume “sufficient smoothness” of all
derivatives. → This is often the case, but not always !

In general, if f(t,y) has k bounded derivatives at y(t),
i.e.,

sup
t0≤t≤tf

∥∥∥∥ djdtj f(t,y(t))

∥∥∥∥ ≤M, j = 0, 1, . . . , k,

then y(t) has k + 1 bounded derivatives∥∥∥∥ djdtjy
∥∥∥∥ ≤M, j = 1, 2, . . . , k + 1.

So if f(t,y) is discontinuous but bounded, then y(t)
has a discontinuous but bounded first derivative.

But the higher derivatives are not generally bounded, so
the Taylor series expansion is invalid and discretization
across such a point may yield inaccurate results.

40

Suppose there is a t̄ ∈ [0, tf] where f is discontinuous.

To get a (non-smooth) solution, we solve 2 problems:

ẏ1 = f(t,y1), 0 < t < t̄, y1(0) = y0,

and ẏ2 = f(t,y2), t̄ < t < tf , y2(t̄) = y1(t̄).

The numerical method does not know about t̄.
We can expect the usual accuracy if we break the
problem up at t̄ !

Example 4. Let τ > 0 be a parameter and

f(t, y) = t− jτ, jτ ≤ t < (j + 1)τ, j = 0, 1, . . . , J.

Exercise: Find the exact solution of the IVP

ẏ = f(t, y), y(0) = 0.

Show that any second-order method returns the exact
solution if it uses the points tj = jτ , j = 1, 2,

41

→ We may not know where t̄ is beforehand !

• What if we blindly step over it ?
We get an O(∆tn̄) error, regardless of the (formal)
order of accuracy of the method.

The error is generally O(τ∆t) at each step.

So if we take O(1/∆t) steps (discontinuity is jumped
over many times during integration), error is O(1).

Similarly if τ = O(1/∆t) (sharp teeth), error is O(1).

42

The common way to describe discontinuities in f(t,y)
is in terms of switching functions g(t,y),

f(t,y) =

{
fI(t,y) if g(t,y) < 0,
fII(t,y) if g(t,y) > 0.

e.g., simulations involving dry friction.

The standard practice is to use an event location
algorithm that combines an interpolant of the
numerical solution with a nonlinear algebraic equation
solver to locate the time t∗ such that g(t∗, y(t∗)) = 0.

Note however that this becomes more complicated
when g is a vector (i.e., there are multiple events)
because the first such t∗ must be detected.

Alternatively, one could simply rely on adaptive step-
size control to detect discontinuities and take small
steps over them.

However, this approach is generally neither as efficient
nor robust as using event location.

43

In general, a method of order p matches the first p+ 1
terms in the Taylor series of the exact solution and has
a truncation error of O(‖y(p+1)‖∆tpn).

Example 5. Consider the harmonic oscillator

ü+ ω2u = 0, u(0) = 1, u̇(0) = 0, 0 < t < tf ,

with exact solution u(t) = cos(ωt).

Noting
‖u(p)‖ = ωp,

we see that the higher derivatives of the solution grow
in size for high frequencies ω � 1.

Thus the local error is O(∆tp+1ωp+1).

So in order to resolve solutions to such highly oscillatory
problems, we must take ∆t < 1/ω, independent of p!

In fact, increasing p if ∆t > 1/ω is pointless.

44

