CHAPTER 7: The Shooting Method

e A simple, intuitive method that builds on IVP
knowledge and software.

Not recommended for general BVPs!

But OK for relatively easy problems that may need
to be solved many times.

Idea: Guess all unknown initial values. (aim)
Integrate to b. (shoot)
(Try to hit BCs at z = b.)

Adjust initial guesses and repeat.

Fundamental disadvantage: directionality imposed
on BVP.

— Shooting inherits stability of IVP (not just BVP).

7.1 Single Shooting

y' =f(x,y), a<x<b,
g(y(a),y(b)) =0, m nonlinear equations.

Let y(x) =y(z;y.) be the solution of the ODE
with initial value y,.

We want to choose y, to solve
h(y.) = g(ya; y(b;y4)) = 0.
Software needs two parts:

e |VP solver (ode45, odelb5s, your own, ...).

e Nonlinear algebraic equation solver
(Newton; for scalar case: bisection, secant, ...).

e Bisection (scalar case only): find two initial values
yé),yé) such that h(y((ll)), h(yc(?)) differ in sign.

Set vy =Ly + vy,
Evaluate h(y (3)).

Ifsgn((y C(L)—sgn((y (1))),
set yé): Ly (3)_|_y(2))_

Else set y = (ya S y(l)).

Repeat to convergence.

e Newton:
More complicated (see text pp. 178-180).

- Quasi-Newton methods are more efficient in
practice (freeze Jacobian, etc.)

7.1.1 Problems with Single Shooting

In converting from BVP to IVP, you convert
stability of BVP to stability of IVP.

presumably, this is ok this maﬂe bad!

— You can convert a nice problem into a nasty one!
e.g., shooting assumes the IVPs have solutions all the
way to x = b even for bad guesses of y,,!

Example 1. y'= A(2)y +q(z),

where
0 1 0
A = 0 0 1 :
—2X3 A2 2\

y1(0) = B1, 11(1) = B2, y2(0) = Bs,

with exact solution

u(z)
yx) = | w(z) |,
u//(CIZ)
eA(x—l)_1_62)\(x—1)_|_e—Ax

u(z) = Sy + cos(mx).

Note 1. q(z),8 can be determined from exact
solution (to make it be the exact solution).

For A\ =~ 20, BVP is stable but IVP is not!

A=1 & Shooting ok.
A=10 <« Wrong (but plausible!) solution.
A=20 < Error ~ 200.
A=50 <« Error ~10%.

8xact and approximate ut) ‘#xact and approximate u(t)

18 2
16F
15
14}
5 ~
12 >
1
: N
N
> 08 ~ 3 05
N .
0.6- 5
N \\
0.4t 0 N :
S
0.2
-0.5,
o |
e = i . : : .
] oH I DS R S E R e o ols o) 1 0 01 02 03 04 05 06 07 08 09 1
1 1
(a) A=1 (b) A =10

Figure 7.1: Ezact (solid line) and shooting (dashed line) solutions for Eu-
ample 7.2.

exact and approximale u(t) A x 107 exact and approximata u(1)
50 T T i o T
0| === = kS i 2
o
_sof ' 15
5 -100 2 A
—150F p 0.5F
_200 ol- - e
_250 : L 05 L . n 5
Q 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 09 1 <] o1 02 0.3 0.4 05 06 0.7 0.8 0.9
1 1
(a) A =20 (b) A =50

Figure 7.2: Ezact (solid line) and shooting (dashed line) solutions for Ex-
ample 7.2.

7.2 Multiple Shooting

Problems with single shooting are exacerbated when b
is large.

Idea: Restrict the sizes of the intervals over which the
various |VPs are integrated.

Define a mesh
CL:CC()<£131<"'<ZIZ’N_1<ZCN:Z).

Solve y’'=f(x,y) on each subinterval [x,,_1,x,].

Then patch them together to form solution on [a, b].

y; — f(x7Yn)7 Tn—1 < T < Ty,
Yn($n—1) = Cp—-1, n = 1727°" 7N°

Assuming these IVPs are solved exactly,
the exact solution to the BVP satisfies

Y(ZE) :yn(ZB;Cn_l), Ln—1 SCESCEH, n = 1727"' 7N7
where
Yn(xn;cn—l) — Cn, M = 1727°" 7N_17 (1)
g(co,yn(b;cn_1)) = 0.

Equations (1) are patching (continuity) conditions.

— Nm algebraic equations for Nm unknowns.

with each ¢,,, n =0,1,...., N — 1, of length m.

Write as nonlinear system
h(c) = 0.
Apply Newton's method

A(c(”+1)—c(”)) — —h(c(”>),
oh

A = — .
6(:0(,,)

A has a sparse block structure

[—Y1(t1) I
~Yo(ty) I

-Yn_1(tn—1) I
Ba B,Y n(b) |

Variants of Gauss elimination that take advantage of
sparsity can solve in O(IV) time.
(In parallel, it can be O(log N).)

Note that the blocks Y, (%,) can also be constructed
in parallel, so sometimes multiple shooting is known as
parallel shooting.

Matrix A turns out to be the same as if you applied
multiple shooting to the linearized BVP.

e Multiple shooting “solves” the most serious
problems of single shooting (i.e., bad conditioning,
finite escape time).

e.g., Multiple shooting solves Example 1 for A = 20
with no problem.

But it is not so simple to code anymore!

Also you may need many subintervals

7

inefficient
(IV grows linearly with \.)

