
Chapter 3 - Boundary Value

Problems

3.1 Introduction

Recall that a system of ODEs has many solutions.

In an IVP, the solution of interest is determined by
specifying the values of all the solution components at
one point as well as a direction of integration.

In a BVP, there are relationships between solution
components at more than one point in the range of
the independent variable, to which we now refer as x
instead of t to emphasize the lack of directionality in
the integration.

As we have noted, IVPs often have unique solutions,
but BVPs often have none or more than one.

Because of this, the user must supply an initial guess
at the solution of interest.

Often there are sets of parameters that must be
determined for the BVP to have a solution.

Again, there may be one set or more than one set!

1

We mainly consider the so-called two-point BVP

y′(x) = f(x,y,p), a ≤ x ≤ b, 0 = g(y(a),y(b),p),
(1)

where p is a vector of unknown parameters.

This is called a two-point BVP because the BCs involve
the solution at only the 2 end points x = a and x = b.

If conditions on the function are given at more than 2
points, then we have a multi-point BVP.

The Matlab BVP solvers are called bvp4c and bvp5c,
and they accept multi-point BVPs directly.

However, many others solvers do not, so we discuss
how to convert multi-point BVPs to two-point BVPs.

Note 1. There is a code called bvp6c out of the
Oxford University Computing Laboratory that is a
sixth-order extension of bvp4c.

It seems to have all the functionality of bvp4c and
bvp5c, but it is more closely related theoretically to
the numerical method in bvp4c.

2

bvp4c and bvp5c can actually handle a class of singular
BVPs of the form

y′(x) =
S

x
y + f(x,y,p), a ≤ x ≤ b,

0 = g(y(a),y(b),p),

where S is a constant matrix specified as the value of
the SingularTerm option of bvpset.

Note 2. The right-hand side function for this
problem evaluates only f(x,y,p).

The boundary conditions must be consistent with the
necessary condition Sy(a) = 0, and the initial guess
should satisfy this condition as well.

Such problems are often the result of PDEs that have
been converted to ODEs by means of a switch to
cylindrical or spherical co-ordinates to take advantage
of symmetry.

3

Parameters may arise naturally as the physical model is
derived, or they may be added artificially as part of the
solution process, e.g., if there are singular coefficients
or the problem is posed on an infinite interval.

bvp4c and bvp5c accept problems with unknown
parameters directly; but many other solvers do not, so
we discuss how to convert problems with parameters
so they can be handled by these other solvers.

Note 3. For brevity, we generally suppress the explicit
dependence of p in (1).

We have talked about conversion of ODEs to standard
(first-order) form, but we also noted that some solvers
handle higher-order equations like ÿ = f(t,y) directly.

It is even more advantageous to handle high order
directly for BVPs, but it complicates the interface, so
it is not done in Matlab.

Many codes also assume the BCs to be separated; i.e.,
each component of g involves unknowns at only one
end point at a time.

We also discuss how to convert problems with non-
separated BCs to ones with separated BCs.

4

It is not always clear what BCs make sense and where
they can be applied (cf. the pendulum problem of
Section 1.2).

There is considerable art to solving a BVP with a
singularity at an end point or one posed on an infinite
interval.

BVPs are generally much harder to solve than IVPs!

e.g., any solver can fail even when a good initial guess
at the solution and parameters are provided.

Sometimes a solver may find a pseudo-solution, i.e.,
a numerical solution to a problem with no analytical
solution.

Although bvp4c and bvp5c can be effective, no solver
is best for all problems.

In particular, the moderate orders of bvp4c and bvp5c

and the PSE of Matlab make it inappropriate for
problems with sharp changes or that require stringent
tolerances.

5

3.2 BVPs

The facts of life for BVPs are much different than they
are for IVPs.

For f(x, y, y′) sufficiently smooth, the IVP

y′′ = f(x, y, y′), y(a) = ya, y′(a) = s,

has a unique solution y(x) for x ≥ a.

The exemplary two-point BVP is the linear ODE

y′′ + y = 0 (2)

with separated BCs

y(a) = ya, y(b) = yb.

6

A useful way to analyze such problems is to let y(x; s)
be the solution of the ODE (2) with initial values
y(a; s) = ya and y′(a; s) = s.

With this problem, for each s, y(x; s) satisfies the BC
at x = a and exists everywhere between a and b.

So what magical value of s will y(b; s) = yb?

If there is such a magical s that satisfies this algebraic
equation, we will have solved the BVP.

For a linear problem, this is (relatively) easy to do:

Let y1(x) be the solution of (2) with ICs y1(a) = ya

and y′

1(a) = 0.

Let y2(x) be the solution of (2) with ICs y2(a) = 0
and y′

2(a) = 1.

Linearity implies that the general solution of (2) is

y(x; s) = y1(x) + sy2(x).

7

Thus the BC

yb := y(b; s) = y1(b) + sy2(b)

is a linear algebraic equation that can be solved for the
magical initial slope s.

It is easy to deduce now that the BVP will have exactly
one solution when y2(b) 6= 0; in this case the magical
slope is

s =
yb − y1(b)

y2(b)
.

Moreover, if y2(b) = 0, then there are infinitely many
solutions when yb = y1(b) and no solutions otherwise.

Even in a case with such clear theory, we can appreciate
there being numerical difficulties if y2(b) ≈ 0.

The extremes of this are computing a “solution” when
none exists or concluding there is no solution when
there is.

8

Sturm–Liouville Eigenproblems

Sturm–Liouville (SL) eigenproblems are exemplified by
the ODE

y′′ + λy = 0, 0 ≤ x ≤ π, (3)

with non-separated periodic BCs

y(0) = y(π), y′(0) = y′(π),

or separated Dirichlet BCs

y(0) = 0, y(π) = 0.

For all λ, we have the trivial solution y(x) ≡ 0.

We are more interested in the special values of λ (called
eigenvalues) for which there exist non-trivial solutions
y(x) (called eigenfunctions).

9

Note 4. This is a nonlinear BVP because the
unknown λ multiplies the unknown y(x).

We see that if y(x) solves the BVP, then so does αy(x)
for any constant α.

This means that to completely specify a solution, we
need a normalizing condition; e.g., y′(0) = 1.

This is a valid choice because y′(0) = 0 leads to the
trivial solution; thus if y′(0) 6= 0, we can scale y(x)
such that y′(0) = 1.

We can think of the normalizing condition as another
BC needed to determine the unknown parameter λ.

For λ > 0, the solution of (3) subject to y(0) = 0 and
y′(0) = 1 is

y(x) =
sin(

√
λx)√
λ

.

If we solve the BVP with Dirichlet BCs, the condition
y(π) = 0 amounts to a nonlinear algebraic equation
for λ.

10

Existence and uniqueness of solutions for nonlinear
algebraic equations are generally hard to establish.

However, this problem is easy enough that we find the
BVP has a non-trivial solution if and only if

λ = k2, k = 1, 2,

Note 5. When solving SL problems, we need to know
which eigenvalue is of interest!

Fortunately, so much is known about these problems
theoretically that good codes let you specify exactly
what you want, e.g., the fifth eigenvalue and its
corresponding eigenfunction.

If you wish to use standard BVP software, then you
must provide guesses for both the eigenvalue and
eigenfunction of interest to you.

This can be tricky!

The use of special-purpose software for these problems
is recommended.

11

Nonlinear BVPs

As usual, nonlinearity introduces further complications.

Consider the ODE

y′′ + |y| = 0

with separated BCs

y(0) = 0, y(b) = yb.

If a linear BVP has more than one solution, it must
have infinitely many; but a nonlinear BVP may have
only a finite number.1

We find that for any b > π, there are exactly 2 solutions
for each yb < 0.

One solution has the form y(x; s) = s sinhx.
1This is completely analogous to the number of solutions of a set of linear

equations versus a set of nonlinear equations.

12

The second solution has the form y(x; s) = s sinx.

Here is what the solutions look like for b = 4 and
yb = −2; see also the Matlab demonstration program
twobvp.m.

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

y

A BVP with two solutions

To produce the figure, we needed 2 initial guesses:
y(x) ≡ −1 is used to compute the solution that is
always negative, and y(x) ≡ 1 is used to compute the
other one.

13

In general, models of physical situations described by
BVPs may not have unique solutions!

Also, problems involving parameters may only have
solutions for parameters in certain ranges.

Thus in practice the solution of BVPs may involve a
theoretical exploration of existence and uniqueness.

This is in contrast to the solution of IVPs where
the local existence and uniqueness of solutions are
guaranteed by mild theoretical conditions that are
almost always satisfied in practice.

14

3.3 BCs

It may not be clear what kinds of BCs to use and where
they should be applied.

It is common for BVPs to be singular in the sense that
either the ODEs are singular at an endpoint or the
interval is infinite (or both!).

The standard theory breaks down in such cases, so
we have to garner all the insight we can from the
underlying physics and the mathematical analysis in
order to help solve the problem.

Generally the number of BCs required equals the sum
of the orders of the ODEs plus the number of unknown
parameters.

This is analogous to the situation with IVPs.

BVP solvers fail if you do not provide the correct
number of BCs, i.e., too few or too many.

Here are some typical scenarios when it may be difficult
to determine BCs or how to apply them.

15

• All obvious physical constraints have been imposed,
yet there are not enough BCs. In this case you
should look for other conditions like a conservation
of integrals or normalizing condition.

• Some BCs may only describe the behaviour of the
solution, rather than giving a specific condition;
e.g., the solution must be bounded at a singular
point, or it must decay in a certain way at infinity.
It is usually possible to convert these kinds of BCs
to standard form, possibly by introducing some
unknown parameters.

• There may be too many BCs. You may know more
than is necessary to completely specify the BVP.
BCs that are consequences of the ODEs and some
other BCs should be dropped. Usually these BCs
involve higher derivatives of the solution.

16

3.3.1 BCs at singular points

We begin by discussing singularities at finite points.

This is a common problem when reducing a PDE to
an ODE using cylindrical or spherical symmetry.

Consider Bratu’s equation, which is used to model
spontaneous combustion:

uxx + uyy + ey = 0.

In the case of cylindrical or spherical symmetry, we get
the following ODE for u = u(r)

u′′ + k
u′

r
+ eu = 0, 0 ≤ r ≤ 1,

with k = 1 for cylindrical symmetry and k = 2 for
spherical symmetry.

The obvious problem is the term u′/r for r = 0.

17

We expect this problem to be an artifact related to the
co-ordinate system and not something fundamental.

Indeed because of symmetry, u′(0) = 0, so u′/r is
indeterminate, not undefined, near r = 0.

In fact for methods that do not need to evaluate the
right-hand side at r = 0, there is no difficulty solving
this problem.

Unfortunately, bvp4c and bvp5c do evaluate the right-
hand side at both ends of each mesh subinterval, so it
is less straightforward in this case.

The idea is to use analytical means to approximate the
solution near the singular point.2

This is where you need to bring in knowledge from
outside of numerical analysis.

Often some kind of series or asymptotic approximation
is used.

2We have seen this as a method for dealing with singularities in IVPs.

18

For this example, we expect a smooth solution with
even symmetry, so we can expand in a Taylor series of
the form

u(r) = u(0) +
u′′(0)

2
r2 +

u(4)(0)

4!
r4 +

Substituting this into the ODE

(u′′(0) + . . .) +
k

r
(u′′(0)r + . . .) + eu(0)+... = 0.

Equating the leading coefficient to 0, we find

u′′(0) = − eu(0)

k + 1
,

leading to the approximation

u(r) ≈ u(0) − eu(0)

2(k + 1)
r2.

19

This is good enough to approximate u(r) on an interval
[0, δ] for sufficiently small δ.

The derivative of this approximation also provides an
approximation to u′(r).

The numerical solution can then be found on [δ, b]
where the equations are not singular.

Note however that u(0) is unknown; this is a typical
example of how unknown parameters are introduced
while solving BVPs.

A BC tells us how the solution of interest behaves as
it approaches an end point; this may not be as simple
as approaching a given value.

The BC u′(0) = 0 for Bratu’s problem tells us that
u → u0 (a constant) as r → 0, but other types of BCs
are possible.

20

It can be more difficult to determine the behaviour of
solutions at a singular point.

Consider the BVP

yy′′ = −1, y(0) = 0, y(1) = 0.

For y(x) → 0 as x → 0, 1, we need that y′′(x) become
unbounded at these points.

First we note that the solution is symmetric about
x = 0.5, so we can restrict our analytical treatment to
the origin.

We must expect (at least) two solutions because if
y(x) is a solution, then so is −y(x).

The solution y(x) vanishes at x = 0 but has unbounded
derivatives there, so we try

y(x) ∼ axb

for constants a and b.

21

Substituting this into the ODE, we find that

(axb)(ab(b − 1)xb−2) = a2b(b − 1)x2b−2 = −1.

Now if 2b − 2 < 0, this expression is unbounded as
x → 0.

If 2b − 2 > 0, the limit exists, but it is 0, not −1.

If 2b − 2 = 0, this expression is identically 0.

This tells us that the form that we have assumed for
the solution is wrong!

With some insight, we assume

y(x) ∼ ax(− log(x))b.

Substituting this into the ODE, we find that

−a2b(− log(x))2b−1[1 − (b − 1)(− log(x))−1] = −1.

22

For this to have a limit as x → 0 we must have
2b − 1 = 0 or b = 1/2.

From this limit we find −1 = −a2(1/2) or a = ±
√

2.

It seems that there are exactly 2 solutions; one will be
positive for x > 0, and that is y(x) ∼ x

√

−2 log(x).

23

3.3.2 BCs at infinity

Consider the ODE

y′′′ + 2y′′ − y′ − 2y = 0.

Its general solution is

y(x) = Aex + Be−x + Ce−2x.

There are 3 components, 2 that decay and 1 that grows
as x → ∞.

Suppose we wish to solve this problem on [0,∞) with
BCs

y(0) = 1, y′(0) = 1, and y(∞) = 0.

The third BC implies A = 0.

The other 2 BCs lead to B = 3 and C = −2.

24

However consider the BCs

y(0) = 1, y(∞) = 0, and y′(∞) = 0.

The second BC implies A = 0.

But the last BC places no constraint on the solution,
and the first one only gives us C = 1 − B.

Thus this BVP has infinitely many solutions!

If a BVP is not well-posed with BCs at infinity, it is
natural to expect difficulties when trying to impose
them at a finite point b ≫ 1.

i.e., suppose we try to impose

y(0) = 1, y(b) = 0, and y′(b) = 0.

For large values of b (even as “large” as b = 20), the
linear system that determines A, B, and C will be
ill-conditioned.

25

The essence of the matter is that the two solution
parts that decay exponentially cannot be distinguished
from each other numerically by their values at x = b.

We can gain even more insight by generalizing this to
a system of linear ODEs with constant coefficients

y′ = Jy + q(x).

For simplicity suppose J is non-singular.

Then the function p(x) := −J−1q(x) is a particular
solution of the ODEs.

Further assume that J has a complete set of
eigenvectors {vj} and corresponding eigenvalues {λj}.

This implies there are constants αj such that

y(a) − p(a) =
m

∑

j=1

αjvj,

26

and the general solution to the ODEs is

y(x) = p(x) +
m

∑

j=1

αje
λj(x−a)vj.

So y(x) is bounded on [a,∞) only when the BCs at
x = a imply that αk = 0 for all k such that Re(λk) > 0.

Accordingly, the BVP is well-conditioned for b ≫ a
only when the BCs at x = a exclude the terms that
grow exponentially fast as x increases.

Similarly the expansion

y(b) − p(b) =
m

∑

j=1

βjvj,

tells us that the BCs at x = b must imply that βk = 0
for any k such that Re(λk) < 0 for the BVP to be
well-conditioned.

27

Roughly speaking, components that decay rapidly from
left to right must be determined by the BCs at the left
end point, and vice versa for components that increase
from left to right (and hence decay from right to left).

The general truth is that the BCs restrict the kinds of
behaviours that a solution can have.

28

Travelling wave solutions of Fisher’s

equation

A wave travelling with speed c has the form u(x, t) =
U(z), where z = x − ct.

A travelling wave solution U(z) of Fisher’s equation3

satisfies the ODE

U ′′ + cU ′ + U(1 − U) = 0.

It is easy to see there are 2 steady states U(z) ≡ 1, 0.

Typical BCs that preclude steady-state solutions are

U(−∞) = 1, U(∞) = 0.

For a given c one might be tempted to conclude we
have a properly defined BVP.

3This equation was originally derived for the simulation of propagation of a
gene in a population.

29

However, it turns out there are an infinite number of
solutions: if U(z) is a solution, then so is U(z + γ) for
any constant γ.

So if you replace ±∞ by some large numbers ±Z
and use your favourite BVP solver, you are not likely
to succeed because you have not specified enough
information to specify which of the infinite number of
solutions you want.

This problem has two critical points (0, 0) and (1, 0)
in the phase plane (U,U ′).

A linear stability analysis shows that if c ≥ 2, (0, 0) is
a stable node and (1, 0) is a saddle point.

Analysis shows that if c ≥ 2 then near the point (0, 0)
a solution to the BVP exists with

U ′(z) ∼ βU(z),

where β = (−c+
√

c2 − 4)/2, and near the point (1, 0)

30

a solution exists with

(U(z) − 1)′ ∼ α(U(z) − 1),

where α = (−c +
√

c2 + 4)/2.

Linear stability analysis amounts to approximating the
nonlinear ODEs by linear, constant-coefficient ones.

But we know solutions to such problems are a particular
solution plus a linear combination of exponentials.

So let’s look for a solution of this form approaching
(1, 0) as z → −∞: let

U(z) ∼ 1 + peαz,

and hence
U ′(z) ∼ αpeαz.

To approach (1, 0) as z → −∞ we require Re(α) > 0.

Substituting this into the ODE, we find that

α2peαz + cαpeαz ∼ peαz + p2e2αz;

31

hence
α2 + cα ∼ 1 + peαz ∼ 1,

as z → −∞.

Thus α = (−c ±
√

c2 + 4)/2,4 and only α = (−c +√
c2 + 4)/2 has Re(α) > 0.

To formulate the correct BC without introducing an
extra unknown for p, we can require

U ′(z)

U(z) − 1
→ α,

as z → −∞; i.e., we choose a large number Z and
impose the BC

U ′(−Z)

U(−Z) − 1
− α = 0.

For fun, we proceed a little differently in working out
the BC for z → ∞.

4The fact that the two values have opposite signs reflects the fact that
(1, 0) is a saddle point.

32

Because U(z) → 0 as z → ∞, U(z)(1−U(z)) ≈ U(z),
and so we can look at

U ′′ + cU ′ + U = 0,

having solution
U(z) ∼ qeβz,

where β satisfies β2 + cβ + 1 = 0.

More analysis indicates we must use β = (−c +√
c2 − 4)/2; essentially we work with the more slowly

decaying part of the solution — the faster decaying one
is then guaranteed to have vanished by the endpoint
we choose.

Recall that if U(z) is a solution, then so is U(z + γ);
this allows us to choose q = 1 and impose the BC

U(Z)

eβZ
− 1 = 0.

33

Other kinds of asymptotic behaviour

Not all BCs posed on infinite intervals have solutions
that decay exponentially.

Consider

y′ = λxy, y(0) = 1, y ∼ e−x2
as x → ∞.

Note that λ is an unknown.

It is easy to solve this BVP analytically to obtain

λ = −2, y(x) = e−x2
.

Numerically we would impose a BC for some large b.

Because this y(x) decays faster than exponentially, we
may choose a b that is too large.

This can cause the BVP code to fail because it cannot
distinguish between the various solutions at x = b.

34

Algebraic decay

At the other extreme are the BVPs with solutions that
decay algebraically.

Consider

y′ = −λy2, y(0) = 1, y(∞) = 0,

where again λ is unknown.

The analytical solution is easily found to be

y(x) =
1

λx + 1
.

This solution satisfies the BC at ∞ for any λ > 0; i.e.,
this BVP has infinitely many solutions.

We may need to provide more information about how
the solution to a singular problem has to behave in
order to have a well-posed problem.

35

e.g., if we require y(x) ∼ 1/x as x → ∞, then there is
a unique solution with λ = 1.

With algebraic decay, b must generally be taken to be
quite large in order for it to represent the solution at
∞ to a reasonable accuracy.

e.g., suppose we impose y(b) = 1/b; then it is easily
found that

λb = 1 − 1

b
, yb(x) =

1

x + 1 − x/b
.

Hence we would need quite a large b even for modest
accuracy!

e.g., b = 104 for relative accuracy 10−4.

36

3.4 Numerical Methods for BVPs

The theoretical approach to solving BVPs from Section
3.2 is based on the solution to IVPs and nonlinear
algebraic equations.

Because we have good software for each of these
problems, it is a natural idea to combine them to solve
BVPs in what is known as a shooting method.

However, the most popular BVP solvers are not
shooting codes.

The basic difficulty is that a well-posed BVP can lead
to ill-posed shooting IVPs!

Consider

y′′ − 100y = 0, y(0) = 1, y(10) = yb.

Shooting (from left to right) involves solving an IVP
with ICs

y(0) = 1, y′(0) = s.

37

The exact solution to the IVP is

y(x; s) = cosh(10x) + 0.1s sinh(10x).

We note that

max
x∈[0,10]

∂y

∂s
= 0.1 sinh(10x) ≈ 1.3 × 1042.

This says that the solution is extremely sensitive to the
choice of s.

The value of s that solves the BVP is

s =
10(yb − cosh(100))

sinh(100)
.

Using this value in y(x; s), we then find that

∣

∣

∣

∣

∂y

∂yb

∣

∣

∣

∣

=

∣

∣

∣

∣

sinh(10x)

sinh 100

∣

∣

∣

∣

≤ 1;

i.e., the solution is not sensitive to the boundary value.

38

Shooting can be effective if the resulting IVPs are not
too unstable; if they are, codes may blow up before
reaching x = b.

More often, however, the solver will reach x = b, but
y(b; s) will be inaccurate because we are solving an
unstable IVP.

This difficulty feeds back into the nonlinear solver,
which then cannot find an accurate value of s that
solves the BVP.

Through proper preparation of the problem, shooting
can solve more problems than perhaps is appreciated.

The approach we have been describing is more precisely
called simple shooting because we only take one shot
and hope the integration makes it all the way to x = b.

One way to stabilize simple shooting (and potentially
improve its efficiency) is to split [a, b] into several parts
and perform simple shooting only over each part.

39

The idea is that if f(t,y) is Lipschitz, then there is a
bound for the stability of the IVP involving eL(b−a); so
reducing the effective length (b−a) leads to exponential
improvement in stability!

This method is thus known as multiple shooting.

Moreover the IVPs on each subinterval can be
integrated simultaneously; hence multiple shooting is
also called parallel shooting.

The solutions on the various subintervals must then be
pieced together to form a continuous approximation
over the entire interval.

Suppose we have a BVP with m first-order ODEs and
N − 1 breakpoints; i.e., [a, b] has been divided into N
subintervals.

Then we have (N + 1)m (possible unknowns) – m
(determined from BCs) = Nm unknowns in m (BCs)
+ m(N − 1) (continuity conditions) = Nm nonlinear
algebraic equations.5

5This accounting is slightly more complicated for non-separated BCs.

40

The nonlinear algebraic equations are of course solved
by a variant of Newton’s method.

At each iteration, a highly structured linear system
must be solved.

It is critical to exploit this structure in practice!

If the break points are chosen carefully and the linear
systems handled properly, multiple shooting can be
quite effective.

In this view of multiple shooting, each IVP is solved by
an IVP solver using variable step sizes.

Finite-difference methods can be viewed as multiple
shooting methods where only one step is taken
between break points; i.e., the solution to the BVP
is approximated by points y0, y1, . . . , yN on a mesh
a = x0 < x1, . . . , < xN = b.

The BCs translate into the set of m (nonlinear)
equations g(y0,yN) = 0.

41

A simple but important numerical method is the
trapezoidal rule

yi+1 − yi =
∆xi

2
[f(xi,yi) + f(xi+1,yi+1)],

for i = 0, 1, . . . , N − 1.

These Nm equations plus the m BCs constitute a
system of (N + 1)m nonlinear algebraic equations for
the (N + 1)m unknowns yi ≈ y(xi), i = 0, 1, . . . , N .

Notice that the yi are defined implicitly even if the
one-step method is formally explicit; e.g., forward Euler
would lead to

yi+1 − yi = ∆xif(xi,yi),

but y0 and yN are still coupled nonlinearly through
the BCs g(y0,yN) = 0.

This happens because of the fundamental difference
between IVPs and BVPs.

42

In an IVP, all the information that specifies a solution
is given at a single point, and the solution evolves from
that point in a specific direction, discarding some or
all of the past solution values.

A BVP has information given at (at least) 2 points, so
there is no “direction” of integration, and there is no
discarding of “past” solution values; i.e., all points of
the solution must be solved for simultaneously.

So explicit one-step formulas do not have the same
appeal as they did for IVPs.

Conversely, we need not be scared of implicit methods
anymore.

In particular, the trapezoidal rule is symmetric and
A-stable, making it a solid method for BVPs.

As with multiple shooting, there are (N + 1)m
unknowns, but now N is (much) larger, so it is even
more important to take advantage of the structure of
the equations.

43

To understand this structure better, assume for now
that the ODEs and BCs are linear;6 i.e., let

y′ = J(x)y + q(x),

Bay(a) + Bby(b) = β.

The trapezoidal rule on [xi, xi+1] is

»

−I −
∆xi
2

J(xi)

–

yi +

»

I −
∆xi
2

J(xi+1)

–

yi+1 =
∆xi
2

[q(xi) + q(xi+1)].

These equations can be written in matrix form
0

B

B

B

B

B

@

S0 R0

S1 R1
.

SN−1 RN−1

Ba Bb

1

C

C

C

C

C

A

0

B

B

B

B

B

@

y0

y1
...

yN−1

yN

1

C

C

C

C

C

A

=

0

B

B

B

B

B

@

v0

v1
...

vN−1

β

1

C

C

C

C

C

A

,

where, for i = 0, 1, . . . , N − 1,

Si = −
2

∆xi
I − J(xi), Ri =

2

∆xi
I − J(xi+1), vi = q(xi) + q(xi+1).

6In any event, these linear problems are the building blocks used in the
iteration to solve nonlinear problems.

44

This is handled easily in Matlab by treating this as a
general sparse matrix.

Other solvers restrict their scope to separated BCs

Bay(a) = βa, Bby(b) = βb,

so that they can obtain a banded system
0

B

B

B

B

B

B

B

@

Ba

S0 R0

S1 R1
.

SN−1 RN−1

Bb

1

C

C

C

C

C

C

C

A

0

B

B

B

B

B

@

y0

y1
...

yN−1

yN

1

C

C

C

C

C

A

=

0

B

B

B

B

B

@

βa

v0
...

vN−1

βb

1

C

C

C

C

C

A

,

which can be easily stored and solved.

45

Higher-order RK methods for BVPs

Smooth problems are more efficiently solved (especially
for low tolerances) by using methods of higher order
than the second-order trapezoidal rule.

A general RK method with s stages forms s
intermediate values yi,j ≈ y(xi,j) at the points
xi,j := xi + cj∆xi.

For IVPs our focus was on explicit methods that
calculated these stages successively.

In general, the stages are determined simultaneously by
solving a system of ms nonlinear algebraic equations

yi,j = yi + ∆xi

s
∑

k=1

aj,kf(xi,k,yi,k),

46

and then forming

yi+1 = yi + ∆xi

s
∑

j=1

bjf(xi,j,yi,j).

Implicit RK (IRK) formulas that reduce to Gaussian
quadrature rules when solving the quadrature problem
y′ = f(x) are popular because they have symmetry,
excellent stability, and maximal order 2s for a method
with s stages.

The first such rule is the midpoint rule

yi+1 − yi = ∆xif(xi+1/2,yi+1/2),

which has 1 stage and (maximal) order of 2.

Gaussian formulas do not evaluate the function at the
endpoints of the subintervals; we pointed out that this
can be useful when solving a problem with a singularity
at an endpoint.

47

Finite-difference formulas only provide solutions at
mesh points; hence we consider continuous extensions
for these methods as we did in the IVP context.

A natural continuous extension for an s-stage IRK
method is the polynomial S(x) that interpolates the
mesh values (S(xi) = yi) and the derivatives at the
abscissae (S′(xi,j) = f(xi,j,yi,j)), i = 1, 2, . . . , s.

For a certain class of IRK methods including those
based on Gaussian quadrature formulas, it is not
hard to show that S(xi+1) = yi+1; i.e., the natural
continuous extension is itself continuous!

This fact also implies that S(x) satisfies the ODE at
the abscissae: S′(xi,j) = f(xi,j,S(xi,j)); i.e., S(x)
collocates the ODE at the xi,j on each subinterval.

Generally the natural continuous extension is only
C[a, b], but the formulas of Lobatto type collocate
the ODE at both ends of each subinterval.

Hence S(x) ∈ C1[a, b] for these formulas.

48

The Matlab function bvp4c uses a Simpson formula
as its basic discretization; it is a three-point Lobatto
method of order 4, so its natural continuous extension
is C1[a, b] and also order 4.

The Matlab function bvp5c uses a four-point
Lobatto IIIA method of order 6, and its continuous
extension is C1[a, b] and of order 5.

A classic approach to solving BVPs is to choose a form
for S(x) that allows it to satisfy the BCs, then any
remaining parameters are determined by collocating
the ODE at sufficiently many points.

Some important classes of finite-difference methods
can be viewed as collocation with a continuous
piecewise-polynomial S(x), i.e., a spline.

That is why bvp4c and bvp5c are described as
collocation codes.

bvp4c solves BVPs by computing a cubic spline on
each subinterval [xi, xi+1] of a mesh on [a, b].

49

The spline is determined by requiring that S(x) be
continuous on [a, b], satisfy the BCs, and collocate
the ODEs at the midpoint and endpoints of each
subinterval

S′(xi) = f(xi,S(xi)),

S′(xi+1/2) = f(xi+1/2,S(xi+1/2)),

S′(xi+1) = f(xi+1,S(xi+1)).

As mentioned this in fact makes S(x) ∈ C1[a, b].

As usual these conditions result in a nonlinear system of
algebraic equations to determine the spline coefficients.

When you do this, it turns out S(x) is the natural
continuous extension of the Simpson formula.

So the method can be viewed as a collocation method
or a finite-difference method with continuous extension.

bvp5c sacrifices one order of convergence by not
evaluating the implicit formulas exactly, so we get
a solution of order 5 instead of 6.

50

Enright and Muir implement a family of IRK formulas
with continuous extensions in a Fortran code called
MIRKDC.

One member of this family corresponds to the Simpson
formula, but the continuous extension is higher degree
(and higher accuracy) than the natural continuous
extension used in bvp4c.

MIRKDC has been re-written to take advantage of
enhancements in the Fortran programming language
to make it more user-friendly. The software package is
now called BVP SOLVER.

Collocation is not restricted to first-order ODEs, and
there are advantages to treating higher-order ODEs
directly; this is done in the Fortran codes COLSYS and
COLNEW.

Strictly speaking, these methods can only be viewed as
equivalent to finite-difference methods when applied to
first-order systems.

51

On initial guesses ...

Because a BVP can have any number of solutions, it is
necessary to supply codes with an initial guess to pick
out the solution of interest.

A good guess is often necessary to obtain convergence.

This guess not only involves giving a set of function
values but also a mesh that captures the behaviour of
the solution.

Codes will adapt the mesh after obtaining convergence
on a given mesh so as to obtain a sufficiently accurate
solution with as few mesh points as possible.

Mesh selection for BVPs is much more difficult than it
is for IVPs: For an IVP, the most difficult step size to
select is the first one; the steps that follow are adjusted
one at a time and only slow variation is permitted.

The most difficult part of solving a BVP is providing
suitable initial guesses for the mesh and the solution
that converge to the desired solution.

52

On error control ...

A natural approach to error control is to estimate the
truncation error and adjust the mesh accordingly.

When the truncation error on [xi, xi+1] can be
expressed in terms of the derivative of the solution,
this derivative can be approximated by differentiating
an interpolant using yi, yi+1, and perhaps solutions
values from neighbouring intervals.

An important point for BVPs is that values on either
side of [xi, xi+1] can be used.

Another way of estimating error is to compare the
result to that of a higher-order formula; this is done in
the code TWPBVP of Cash and Wright.

Armed with estimates of truncation errors, meshes can
be adjusted in much the same manner as they were
with IVPs.

53

An obvious difference is that when solving BVPs, the
entire mesh is (generally) changed, whereas only one
step at a time is changed when solving IVPs.

Because BVPs are global in nature, a mesh refinement
in one region will affect the errors in another, and not
necessarily always for the better!

However, for methods where the truncation error on
[xi, xi+1] depends on a solution derivative, the effects
of a local mesh change are local (to leading order), so
improving the solution in one region does improve the
solution overall.

A serious difficulty for BVP solvers is that the theory
for estimating truncation errors and adjusting the mesh
depend on the mesh being sufficiently fine.

So it is important that a solver adapt a mesh sensibly
even when error estimates are crude or the mesh is
poorly adapted to the solution.

To improve reliability, the codes COLSYS and COLNEW

supplement the control of truncation error with an
estimate using extrapolation.

54

The idea is as follows: Suppose we can compute a
function F (x;h) that involves a parameter h, and we
want the limiting value F (x; 0).7

If we know that

e(x; h) := F (x;h) − F (x; 0) ∼ φ(x)hp as h → 0,

then we can use F (x;h) and F (x;h/2) to compute
the error of the more accurate result.

Our assumption about how e(x; h) depends on h tells
us that

e

(

x;
h

2

)

∼ φ(x)

(

h

2

)p

,

and hence

F (x;h) − F

(

x;
h

2

)

= e(x; h) − e

(

x;
h

2

)

∼ φ(x) hp [1 − 2−p].

7It is assumed that you cannot simply substitute h = 0 into F (x; h).

55

Solving this equation for φ(x)hp provides a computable
estimate of the error of the more accurate result:

e

(

x;
h

2

)

∼ 1

2p − 1

[

F (x;h) − F

(

x;
h

2

)]

.

The codes MIRKDC and bvp4c take an approach to
error control that is intended to deal more robustly
with poor guesses to the mesh and the solution.

They produce approximate solutions S(x) ∈ C1[a, b]
and control the residual, i.e., the amount by which
S(x) fails to satisfy the ODEs and the BCs:

r(x) := S′(x) − f(x,S(x)), δ := g(S(a),S(b)) − 0.

In the framework of backward error analysis, S(x) is
the exact solution to the BVP

Y′ = f(x,Y) + r(x), g(Y(a)Y(b)) − δ = 0,

which is close to the original BVP if r(x), δ are “small”.

56

If the BVP is well-conditioned, then small perturbations
to the problem result in small perturbations to the
solution, so a solution that is accurate by backward
error analysis is also accurate in the usual sense.

This approach is attractive because the residual is
well-defined no matter how crude the mesh.

For robustness, bvp4c measures the size of the residual
on [xi, xi+1] by

∫ xi+1

x1

‖r(x)‖2 dx,

which is approximated using a five-point Lobatto
quadrature formula, hence requiring two additional
f(x,S(x)) evaluations per subinterval.

57

bvp5c takes advantage of a remarkable relation
between the true error and the (scaled) residual in
its error control:

‖e(x)‖∞,i =
8
√

5

125
∆xi‖r(x)‖∞,i + O(∆x6),

where ∆x = maxi ∆xi.

In practice bvp5c requires

∆xi‖r(x)‖∞,i ≤ τ

for each subinterval i.

It turns out that

‖r(x)‖∞,i ∼ ∆x4
i ‖y(5)(xi+1/2)‖∞ + O(∆x5);

so it is reasonable to expect that as long as y(5)(xi+1/2)
is not exceptionally small, control of ‖r(x)‖∞,i will
effectively control ‖e(x)‖∞,i.

58

Shooting as residual control

As a final remark, simple (and multiple) shooting can
be viewed as controlling residuals.

At each step, the IVP solver controls the local error,
which is equivalent to controlling the size of r(x) of
an appropriate continuous extension of the numerical
method being used.

The nonlinear algebraic equation solver then finds
suitable ICs to make ‖δ‖ small.

In the end, the result is a numerical solution that
satisfies the ODEs and the BCs with a small residual.

59

3.5 Solving BVPs in Matlab

We now examine a variety of nontrivial examples to
illustrate how to solve BVPs in Matlab using bvp4c.

We are not aware of any significant differences in the
performances of bvp4c and bvp5c, and so we discuss
the examples in terms of bvp4c for simplicity and
uniformity of the presentation.

BVPs arise in such diverse forms that they often
require some (and sometimes extensive) preparation
for solution by standard software.

60

Example 3.5.1

Recall, Bratu’s equation arises in a model of
spontaneous combustion. The BVP is

y′′ + λey = 0, y(0) = y(1) = 0.

Bratu showed that for 0 ≤ λ < λ∗ = 3.51383 . . ., there
are 2 solutions, and both are concave down.

These solutions grow closer as λ → λ∗, and they
coalesce to give a unique solution when λ = λ∗; there
is no solution when λ > λ∗.

We begin by solving the BVP when λ = 1.

See ch3ex1.m

Note that the initial guess is y(x) = x(1 − x).

If you take y(x) = 5x(1 − x), the solver still
converges to the same solution, the initial guess
y(x) = 20x(1 − x) converges to the other solution,
and y(x) = 100x(1 − x) does not converge at all.

61

Example 3.5.2

We consider a nonlinear eigenproblem of lubrication
theory from Keller (1992):

ǫy′ = sin2(x) − λ
sin4(x)

y
, y

(

−π

2

)

= 1, y
(π

2

)

= 1,

where ǫ is known, but λ is unknown.

bvp4c makes it easy to solve BVPs involving unknown
parameters, but most solvers do not, so we go through
this example twice.

Either way, however, an initial guess for unknown
parameters must be provided.

They are supplied as the third argument of bvpinit.

Correspondingly, the vector of unknown parameters
are passed as the third arguments to the functions for
evaluating the ODEs and the residual in the BCs.

62

This must be done even if the unknown parameters do
not explicitly appear in either the ODEs or the BCs.

The parameters are then stored in the parameters

field of the solution structure.

See ch3ex2.m

Note 6. The BCs do not involve λ.

If the solver does not treat unknown parameters
directly, we simply define y1(x) = y(x) and y2(x) = λ
and add a trivial ODE indicating that y2(x) is constant:

y′

1 =
1

ǫ

[

sin2(x) − y2
sin4(x)

y1

]

,

y′

2 = 0.

Many solvers require analytical partial derivatives for
the ODEs and BCs with respect to the solution.

If you introduce new variables to account for unknown
parameters, the corresponding partial derivatives must
be provided.

63

Example 3.5.3

The propagation of nerve impulses is described in
Seydel (1988) by the ODEs

y′

1 = 3

(

y1 + y2 −
y3
1

3
− 1.3

)

,

y′

2 = −1

3
(y1 − 0.7 + 0.8y2),

subject to periodic BCs

y1(0) = y1(T), y2(0) = y2(T).

If we know T , these BCs are enough to completely
specify the solution.

If we do not, then we need another BC.

Problems such as these are often converted IVPs; i.e.,
they are originally IVPs that need to be solved up to
the unknown time T .

64

In such cases it is reasonable to assume we have (say)
y1(0) = y0; for concreteness we assume y1(0) = 0.

So we can impose the BCs

y1(0) = 0, y1(T) = 0, y2(0) = y2(T).

However there is still the complication that the interval
of integration [0, T] is unknown because T is unknown.

The only widely used solver that can handle this kind of
problem directly is the multiple shooting code D02SAF

from the NAG library.8

For all other codes (including bvp4c and bvp5c)), the
problem must be transformed to one on a fixed interval.

This is easily accomplished by scaling the independent
variable from t to x = t/T ; hence d/dt = Td/dx, and
the problem is posed on the known interval [0, 1].

8It can do this because it treats the ends of each shooting subinterval as
unknown.

65

Then the BVP becomes

dy1

dx
= 3T

(

y1 + y2 −
y3
1

3
− 1.3

)

,

dy2

dx
= −T

3
(y1 − 0.7 + 0.8y2),

subject to

y1(0) = 0, y1(1) = 0, y2(0) = y2(1).

See ch3ex3.m

These BCs are non-separated, so if your solver can only
handle separated BCs, more preparation is required.

A standard trick is to introduce a new unknown (the
unknown periodic value) y3(t) = y2(T).

This new unknown function is constant, so we also
append a trivial ODE to the system.

We convert the non-separated BC y2(0) = y2(1) into
two separated BCs y2(0) = y3(0) and y2(1) = y3(1).

66

Example 3.5.6

Fluid flow in a long vertical channel with fluid injection
in one side is described in Ascher, Mattheij, and Russell
(1995) by the ODEs

f ′′′ − R[(f ′)2 − ff ′′] + RA = 0,

h′′ + Rfh′ + 1 = 0,

θ′′ + Pefθ′ = 0,

where R is the Reynolds number, Pe = 0.7R is the
Peclet number, and A is unknown.

This system has total order 7, but because of the
unknown A, we require 8 BCs:

f(0) = f ′(0) = 0, f(1) = 1, f ′(1) = 0,

h(0) = h(1) = 0, θ(0) = 0, θ(1) = 1.

67

It is quite common to study how a solution behaves as
a function of parameters in the problem.

If a BVP is solved for a given set of parameters,
we expect the solution, the mesh, and any unknown
parameters to be good initial guesses for the solution
to the BVP with slightly changed parameters.

bvp4c and bvp5c take advantage of this by accepting
a solution structure as a guess structure.

This is not only an efficient way to obtain solutions
to BVPs over a wide range of parameter values, it is
a powerful way of solving difficult BVPs, in particular
those for which an initial guess that converges to a
solution is particularly difficult to obtain.

In this context, building up a solution to a BVP by
solving a sequence of problems with different parameter
values is known as continuation.

This BVP is hard for large R because there is a
boundary layer at x = 0 that requires many mesh
points to resolve.

68

It is easy to find a solution for R = 100 using even
a constant initial guess; to do the same thing when
R = 10, 000 is very difficult!

It turns out we can use the solution for R = 100 as
an initial guess to obtain the solution for R = 1, 000,
which in turn can be used as an initial guess to obtain
the solution for R = 10, 000.

See ch3ex6.m

Tough problems are often solved in this manner,
requiring a large number of BVP solves.

It may then be worthwhile to reduce the run-time of
each one.

This program includes both vectorization and analytical
partial derivatives.

The Matlab Symbolic Toolbox has a function called
jacobian that can help you to generate the matrices
of partial derivatives.

69

We might use the code

syms y y1 y2 y3 y4 y5 y6 y7 R A P F

y = [y1; y2; y3; y4; y5; y6; y7];

P = 0.7*R;

F = [y2; y3; R*(y2^2 - y1*y3 - A); y5;

-R*y1*y5 - 1; y7; -P*y1*y7];

dFdy = jacobian(F,y),

dFdA = jacobian(F,A)

and edit the output to define the subfunction Jac.

The Jacobian of the BCs is handled similarly; the (i, j)

element of dBCdya is ∂g(ya,yb)
∂ya .

This is an 8 × 7 matrix because we have 8 BCs and y

has 7 components.

With the default options, the authors found ch3ex6.m

runs in 13.35s.

It is straightforward to vectorize the code by changing
scalar quantities like y(1) into arrays like y(1,:)

and changing scalar operations like * and ^ to array
operations .* and .^.

70

Vectorization reduces the run time to 8.02s.

Just using analytical partial derivatives but no
vectorization, the code runs in 6.64s.

Using analytical partial derivatives and vectorization
results in a run time of 4.01s.

If we continue to R = 1, 000, 000, bvp4c reports

Warning: Unable to meet the tolerance

without using more than 142 mesh points.

The default limit on the number of mesh points is
floor(1000/m), where m is the number of ODEs.

This is quite arbitrary, so if you receive this warning
you can use the option Nmax to increase it.

In this case if we set Nmax=500, we can solve the BVP.

But this is a rather difficult problem; bvp4c required
437 mesh points to obtain convergence with the default
tolerances; even with vectorization and analytical
partial derivatives, the computation took 22.69s, which
is more than 5 times longer than before.

71

Example 3.5.7

Continuation is an extremely important tool in the
practical solution of BVPs.

Suppose you are having trouble solving the BVP

y′ = f(x,y), g(y(a),y(b)) = 0

because you cannot find an initial guess that is good
enough for the solver to converge.

Suppose you can simplify your BVP to a form

y′ = F(x,y), G(y(a),y(b)) = 0

that can be solved easily (perhaps even analytically).

e.g., F(x,y) and G(y(a),y(b)) may be linear; such
problems are easy to solve because no iteration to solve
nonlinear equations is required.

72

The idea is to “continue” from the solution of the easy
problem to the solution of the problem you really want
to solve.

A simple way to do this is to embed the problem
in a family of problems by introducing an artificial
parameter µ and solve the family of BVPs

y′ = µf(x,y) + (1 − µ)F(x,y),

0 = µg(y(a),y(b)) + (1 − µ)G(y(a),y(b)),

for a sequence of µ values going from 0 to 1.

This simple approach has some utility, but it is not
very powerful:

1. Finding a pair F,G that captures the behaviour of
the original BVP is difficult for hard problems.

2. It is possible that the BVP have no solution for
some values of µ.

73

3. The exact choice of the sequence of µ values
can make the difference between success and
failure. Theory and software to determine a suitable
sequence of µ values exist, but it seems there are
still many open questions.

As an example, we consider the problem

y′

1 = y2,

y′

2 = y3,

y′

3 = −
(

3 − n

2

)

y1y3 − ny2
2 + 1 − y2

4 + sy2,

y′

4 = y5,

y′

5 = −
(

3 − n

2

)

y1y3 − (n − 1)y2y4 + s(y4 − 1),

where n = −0.1, s = 0.2, and the ODEs are to be
solved on [0, b] with b = 11.3 and subject to

y1(0) = 0, y2(0) = 0, y4(0) = 0, y2(b) = 0, y4(b) = 1.

74

We split the ODEs into the linear and nonlinear parts
and introduce a parameter δ to control the influence
of the nonlinear parts:

y′ =













y2

y3

1 + sy2

y5

s(y4 − 1)













+ δ













0
0

−
(

3−n
2

)

y1y3 − ny2
2 − y2

4

0
−

(

3−n
2

)

y1y3 − (n − 1)y2y4













i.e., δ = 0 is a linear problem, δ = 1 is the problem
we want to solve, and 0 < δ < 1 is an intermediate
nonlinear problem with nonlinearity scaled by δ.

For δ = 0, the BVP is easy to solve.

We then use the solution for this δ as the initial guess
for the BVP with a larger value of δ.

We continue in this manner until we reach δ = 1.

It turns out the problem is easy enough that the
sequence δ = 0, 0.1, 0.5, 1 does the trick.

See ch3ex7.m

75

Example 3.5.8

bvp4c and bvp5c can handle multi-point BCs directly;
COLSYS and COLNEW handle separated multi-point BCs.

However, many solvers do not, so we illustrate how to
prepare multi-point BVPs for two-point BVP codes.

A physiological fluid flow problem from Lin and Segel
(1988) can be formulated (after much preparation!) as
the BVP

v′ =
C − 1

n
,

C ′ =
vC − min(x, 1)

η
,

where n and η are known (dimensionless) parameters,
the ODEs are to be solved on x ∈ [0, λ] for λ > 1, and
subject to the BCs

v(0) = 0, C(λ) = 1.

76

The quantity of most interest is the (dimensionless)
emergent osmolarity defined by

Os =
1

v(λ)
.

Lin and Segel use perturbation methods to conclude
that for small n

Os ∼
1

1 − K
,

where

K =
λ sinh(κ/λ)

κ cosh(κ)
,

and κ is a parameter such that

η =
λ2

nκ2
.

It is important to note that the min(x, 1) term in the
ODE for C ′ is not smooth at x = 1.

77

Numerical methods have less than their classical order
of convergence when the ODEs (and hence their
solutions) are not smooth.

Indeed Lin and Segel describe this BVP as two
problems, one on [0, 1] and the other on [1, λ], with
the solutions connected by the requirement that v(x)
and C(x) be continuous at x = 1.

If you don’t know perturbation theory, you can still
solve the problem by recognizing it as a three-point
BVP: we have BCs at x = 0, 1, λ.

First we introduce unknowns y1(x) = v(x) and y2(x) =
C(x) for the interval x ∈ [0, 1]; this leads to the ODEs

dy1

dx
=

y2 − 1

n
,

dy2

dx
=

y1y2 − x

η
,

and the BC y1(0) = 0.

78

Then we introduce unknowns y3(x) = v(x) and
y4(x) = C(x) for the interval x ∈ [1, λ]; this leads
to the ODEs

dy3

dx
=

y4 − 1

n
,

dy4

dx
=

y3y4 − 1

η
,

and the BC y4(λ) = 1.

With these new variables, the continuity conditions at
the internal boundary x = 1 translate to y1(1) = y3(1)
and y2(1) = y4(1).

The only problem left is how can we solve all 4 ODEs
simultaneously, i.e., on the same interval.

It is easy to scale and shift the interval [1, λ] to map it
onto [0, 1] by defining a new independent variable

ξ =
x − 1

λ − 1
.

79

Noting that d
dx = (λ−1) d

dξ, the ODEs on [1, λ] become

dy3

dξ
=

(λ − 1)(y4 − 1)

n
,

dy4

dξ
=

(λ − 1)(y3y4 − 1)

η
,

the original BC y4(x = λ) = 1 becomes y4(ξ = 1) =
1, the continuity condition y1(x = 1) = y3(x = 1)
becomes y1(x = 1) = y3(ξ = 0), and the continuity
condition y2(x = 1) = y4(x = 1) becomes y2(x =
1) = y4(ξ = 0).

See ch3ex8.m

The problem is solved for n = 0.05, λ = 2, and
κ = 2, 3, 4, 5, with continuation in κ.

80

This problem can also be solved directly with bvp4c

and bvp5c as a multi-point BVP with much less
mathematical preparation but a little more accounting.

The essential difference is to define [0, 1] and [1, λ]
as subdomains and specify the BCs and left and right
BCs on these subdomains.

The ODE should also be defined in such a way that the
appropriate function is evaluated based on the domain.

See threebvp.m

81

