
Concepts from High-Performance

Computing

Lecture A - Overview of HPC

paradigms

OBJECTIVE:

The clock speeds of computer processors are topping
out as the limits of traditional computer chip
technology are being reached.

Increased performance is being achieved by increasing
the number of compute cores on a chip.

In order to understand and take advantage of
this disruptive technology, one must appreciate the
paradigms of high-performance computing.

The economics of technology

Technology is governed by economics.

The rate at which a computer processor can
execute instructions (e.g., floating-point operations)
is proportional to the frequency of its clock.

However,

power ∼ (voltage)2 × (frequency),

voltage ∼ frequency,

=⇒ power ∼ (frequency)3

e.g., a 50% increase in performance by increasing
frequency requires 3.4 times more power.

By going to 2 cores, this performance increase can be
achieved with 16% less power1.

1This assumes you can make 100% use of each core.

Moreover, transistors are getting so small that
(undesirable) quantum effects (such as electron
tunnelling) are becoming non-negligible.

→ Increasing frequency is no longer an option!

When increasing frequency was possible, software got
faster because hardware got faster.

In the near future, the only software that will survive
will be that which can take advantage of parallel
processing.

It is already difficult to do leading-edge computational
science without parallel computing; this situation can
only get worse.

Computational scientists who ignore parallel computing
do so at their own risk!

Most of numerical analysis (and software in general)
was designed for the serial processor.

There is a lot of numerical analysis that needs to be
revisited in this new world of computing.

HPC paradigms

The implementation of algorithms on parallel
computers is to a large extent dependent on the target
architecture.

So before we can investigate algorithms that can take
effective advantage of parallelism, it is necessary to
consider how a parallel computer operates.

It is easy to write parallel programs if you don’t care
about performance!

There are two main ways in which computers can be
organized to perform computations in parallel:

• shared memory

• distributed memory (message passing)

To make life interesting, lately these two ways have
been combined to form a hybrid third way.

Shared-memory paradigm

Shared-memory computers have multiple processors
that share access to a global memory space via a
high-speed memory bus.

This global memory space allows the processors to
efficiently exchange or share access to data.

The number of processors used in shared-memory
architectures is usually limited because the amount of
data that can be processed is limited by the bandwidth
of the memory bus connecting the processors.

 CPU CPU CPU

 Cache Cache Cache

 High−speed Interconnect

 Shared Memory

Distributed-memory paradigm

Distributed-memory parallel computers are essentially a
collection of serial computers (nodes) working together
to solve a problem.

Each node has rapid access to its own local memory
and access to the memory of other nodes via some
sort of communications network, usually a high-speed
communications network (or “interconnect”).

Data are exchanged between nodes as messages over
the network.

 CPU CPU CPU

 Cache Cache Cache

 High−speed Interconnect

 Memory Memory Memory

Hybrid-memory paradigm

The latest generation of parallel computers now uses a
mixed shared/distributed memory architecture.

Each node typically consists of a group of 2 to 16
processors connected via local shared memory, and
the multiprocessor nodes are, in turn, connected via a
high-speed interconnect.

 CPU CPU CPU CPU

 Cache Cache Cache Cache

 High−speed Interconnect

 Shared
 Memory

 Shared
 Memory

Shared vs. Distributed

Some facts of life:

• Distributed-memory systems are more prevalent
than shared-memory systems; hybrid-memory
systems are becoming increasingly popular.

• Message-passing programs can execute on either
distributed or shared-memory systems; shared-
memory programs can only execute on shared-
memory systems.

• Shared-memory programming is relatively easy;
message passing is less so. For better or worse, this
means the programmer has more fine-tune control
on the program and can potentially handle more
complicated tasks.

• Message-passing programs often outperform shared-
memory programs even when run on a shared-
memory system.

Message passing

One of the basic methods of programming for parallel
computers is the use of message passing libraries.

These libraries manage data transfer between instances
of a parallel program (usually) running on multiple
processors by a simple send-and-receive mechanism.

Although this seems simple and intuitive, the details
can become much more complicated. In particular,

• How are messages actually sent? (How are they
buffered within the system?)

• Can a processor do other useful work while sending
or receiving messages?

• How can sends and received be paired to ensure
proper transfer of information?

An important aspect of message passing is that sending
a message is much more costly than a flop.

Parallel computing with Matlab

Many of the advantages of Matlab can be used in
conjunction with parallel computing.

There are a number of parallel Matlab libraries
including the Parallel Computing Toolbox and the
Matlab Distributed Computing Server as well as the
freely available pMatlab and MatlabMPI.

In Matlab, it is convenient to think of distributed
arrays, i.e., data that are split up and owned by different
processes2, as opposed to messages.

Distributed arrays can be used to handle the vast
majority of parallel programming tasks.

They are easy to understand, require little code to use,
and fit well with the array-centric nature of Matlab.

In many ways, distributed arrays form an optimal core
parallel programming model for working in Matlab.

2A process can be thought of as an independent CPU.

Types of parallel decomposition

Typically the first step in designing a parallel algorithm
is to decompose the problem into smaller problems
that can be assigned to different processors to work on
simultaneously.

There are two main kinds of decompositions for the
purposes of parallelization:

• domain decomposition (data parallelism)

• functional decomposition (task parallelism)

In a shared-memory paradigm, a lot of the work is done
by the compiler.

In message passing, these decompositions must be
programmed explicitly.

Domain decomposition

(or data parallelism)

A data parallel algorithm is a sequence of elementary
instructions applied to (different) data.

In other words, a new instruction is initiated only after
the previous instruction terminates.

The advantage is that there is a single flow of control.

Data are divided into pieces of approximately the same
size and mapped to different processors.

Each processor works only on the portion of the data
that it is assigned.

Of course, the processes may need to communicate
periodically in order to exchange data.

Special cases of this include Single-Program-Multiple-
Data (SPMD) or Single-Instruction-Multiple-Data
(SIMD) techniques.

SPMD strategies are commonly employed in finite-
difference / finite-element algorithms where processors
can operate independently on large blocks of data and
exchange only the much smaller shared border data at
each iteration.

Beware that there may be parts of an algorithm that
are simply not parallelizable; e.g., get user input or
add two scalars.

These tasks are often handled by the server in the
client-server paradigm (see below).

Fortunately, for many applications the non-
parallelizable tasks consume a relatively small
proportion of the overall effort.

Functional decomposition

(or task parallelism)

When the data assigned to the different processors
require greatly different lengths of time to process,
domain decomposition will not be effective.

The performance of the code will be limited by the
speed of the slowest process; i.e., this becomes a
bottleneck for the computation.

Also, the remaining idle processes do no useful work.

In this case, functional decomposition (or task
parallelism) may make more sense.

In task parallelism, the problem is decomposed into
smaller tasks, and the tasks are assigned to the
processors as they become available.

This way processors that finish quickly can be assigned
more tasks.

Client-server paradigm

Task parallelism is typically implemented in a client-
server paradigm.

 Client 1 Client 2 Client 3

 Server

Figure 1: The client-server paradigm

A master process (the server) is in charge of allocating
tasks to a number of slave processes (the clients).

The master process may also assign tasks to itself.

The client-server paradigm can be implemented at
virtually any level in a program.

For example, to run a program with multiple inputs, a
parallel client-server implementation might simply run
multiple copies of the code serially with the server
assigning the different inputs to each client process.

Once a processor finishes its task, it can be assigned a
new one.

Task parallelism can also be implemented at a lower
level within code.

