
Time Stepping for Vectorial Operator Splitting

Rossitza S. Marinova
Department of Mathematical and Computing Sciences, Concordia University College of Alberta, 7128 Ada Boulevard,

Edmonton, AB, T5B 4E4, CANADA
Phone: 1 (780) 378-8430; Fax: 1 (780) 474 1933

Raymond J. Spiteri
Department of Computer Science, University of Saskatchewan

176 Thorvaldson Bldg, 110 Science Place, Saskatoon, SK S7N 5C9, CANADA

Eddy Essien
Department of Mathematical and Computing Sciences, Concordia University College of Alberta, 7128 Ada Boulevard,

Edmonton, AB, T5B 4E4, CANADA

Abstract

We present a fully implicit finite difference method for the unsteady incompressible Navier–Stokes equations. It is
based on the one-step θ-method for discretization in time and a special coordinate splitting (called vectorial operator
splitting) for efficiently solving the nonlinear stationary problems for the solution at each new time level. The resulting
system is solved in a fully coupled approach that does not require a boundary condition for the pressure. A staggered
arrangement of velocity and pressure on a structured Cartesian grid combined with the fully implicit treatment of
the boundary conditions help to preserve properties of the differential operators and thus lead to excellent stability
of the overall algorithm. The convergence properties of the method are confirmed via numerical experiments.

Key words: Unsteady incompressible Navier-Stokes, Implicit method, Stability
1991 MSC: 76D05, 34A09, 65M12

1. Introduction

Fluid fows with high Reynolds numbers or complex geometries are challenging to simulate and of great
interest to industry; hence there is significant demand for robust and stable algorithms and software, perhaps
even at the expense of a moderately increased computational cost. Fully implicit time-stepping methods are
generally more robust and stable than explicit and semi-explicit methods. Therefore, as suggested in [12],
fully implicit methods should be further investigated and developed.

∗ Corresponding author
Email addresses: rmarinova@math.concordia.ab.ca (Rossitza S. Marinova), spiteri@cs.usask.ca (Raymond J. Spiteri),

eessien@csa.concordia.ab.ca (Eddy Essien).
URL: www.math.concordia.ab.ca/marinova/ (Rossitza S. Marinova).

Preprint submitted to Computational and Applied Mathematics 1 April 2010

The most popular time-stepping methods for the Navier–Stokes equations are the so-called projection or
operator-splitting methods (e.g., fractional step or pressure-correction methods) and are not fully implicit;
see [11] and [12]. Decoupling the velocity and pressure reduces the system into simpler sub-problems, but
the choice of boundary conditions for the pressure in these procedures is problematic. Moreover, the explicit
element introduced by this decoupling requires small time steps to maintain stability. Although operator-
splitting methods can work well, they must be used with care in terms of how well the overall solution
algorithm behaves. They are usually not suitable for flows with high Reynolds numbers or long simulation
times because the requirement of a small time step size.

After discretization in space and time, a fully implicit approach leads to a system of nonlinear equations
that may be singular [12]. For this reason, special spatial discretization or stabilization techniques are needed.
Strongly coupled solution strategies can improve the stability considerably; however, they also need to be
able to handle large nonlinear algebraic systems. Direct solvers can be used for the solution of the linear
systems of equations that arise in this process, but they typically require large amounts of memory, and
despite increases in computational power, are still not feasible for large-scale computations, particularly for
unsteady 3D problems. Hence iterative solvers are the preferred choice for the solution of these systems.
Coordinate splitting and multigrid are two powerful methods for solving such systems.

In this paper, we use the linear two-layer (one-step) scheme, which is also known as the θ-method, for
the temporal discretization; see e.g., [20]. We employ finite difference approximations in space that utilize
computer resources effectively and hence enable efficient computations. For the solution of the nonlinear
stationary problems that arise after the temporal discretization, we use coordinate splitting based on the
Douglas–Rachford scheme [8]. The splitting procedure is constructed in a way that leaves the system coupled
to allow the satisfaction of the boundary conditions but avoids the introduction of artificial boundary
conditions for the pressure.

The paper is organized as follows. The problem is formulated in the next section. The time discretization
is presented in Section 3, including a discussion on the singularity of direct fully implicit schemes. Issues
associated with the solution of the stationary problems that need to be solved after discretization in time
are discussed in Section 4. These include requirements to be satisfied by the differential problem and the
choice of discretization in space as well as the coordinate splitting method. Finally, numerical results are
presented in Section 5 and conclusions in Section 6.

2. Problem Statement

2.1. Incompressible Navier–Stokes Equations

We consider the multi-dimensional incompressible Navier–Stokes equations in dimensionless form

∂uuu

∂t
+ (uuu · ∇)uuu = ν∇2uuu−∇p+ ggg (1)

coupled with the continuity equation, also called the incompressibility condition,

div uuu = ∇ · uuu = 0 (2)

on Ω× (0, T), where Ω is a bounded, compact (spatial) domain with a piecewise smooth boundary ∂Ω. Here
uuu = uuu(xxx, t) = (u, v, w) is the fluid velocity at position xxx ∈ Ω and time t ∈ (0, T) for given T . Also p = p(xxx, t)
is the fluid kinematic pressure, ν = 1/Re is the kinematic viscosity, where Re is the Reynolds number, ggg is
an external force, ∇ is the gradient operator, and ∇2 is the Laplacian operator.

We can write the momentum equation (1) in the following form,

∂uuu

∂t
+ (C + L)uuu+ ∇p = ggg, (3)

where C = uuu · ∇ is the nonlinear convection operator and L = −ν∇2 is the linear viscosity operator.
Taking into account the incompressibility constraint (2), the nonlinear convective term (uuu·∇)uuu in equation

(1) can be written in the equivalent form

2

Cuuu = (uuu · ∇)uuu+ 1
2uuu(∇ ·uuu)

= ∇ · (uuuuuu) − 1
2uuu(∇ ·uuu)

= 1
2 [∇ · (uuuuuu) + (uuu · ∇)uuu],

(4)

which is skew-symmetric. The advantage of using the skew-symmetric form (4) is that it conserves both the
square of velocity as well as the kinetic energy, whereas the divergence form ∇ · (uuuuuu) conserves only the
kinetic energy, and the (original) non-divergence form (uuu · ∇)uuu conserves neither the square of the velocity
nor the kinetic energy.

2.2. Initial and Boundary Conditions

In our investigations, we assume an initial condition

uuu
∣

∣

t=0
= uuu0(xxx), (5)

that is divergence-free, i.e., ∇ · uuu0 = 0, and the following boundary conditions

uuu
∣

∣

∂Ω
= uuub(t),

i.e., the velocity is prescribed at the boundary.
Remark: In order to avoid singularities, the initial and boundary conditions are assumed to agree at

t = 0 and xxx ∈ ∂Ω.
The incompressible Navier–Stokes equations can be classified as partial differential-algebraic equations,

e.g., [2]. The challenges in their numerical solution are well known; they are connected with the fact that the
Navier–Stokes equations are not an evolutionary system of Cauchy–Kovalevskaya type and that the pressure
is an implicit function responsible for the satisfaction of the continuity equation. Furthermore, no boundary
conditions on the pressure can be imposed on rigid boundaries. This creates formidable obstacles for the
construction of fully implicit schemes.

2.3. Balanced Pressure Equation

We now turn to the question of how to construct a robust and stable numerical method, even perhaps
at the cost of a moderate increase in computational effort. For the reasons outlined above, we require an
implicit time discretization procedure that also preserves the coupling of the velocity and pressure.

A formulation with a pressure equation is preferable compared to one with the continuity equation because
we can construct a solver for the resulting nonlinear stationary problem that is not only robust with respect
to the physical and numerical parameters but also computationally efficient. For this reason, we use a special
pressure equation, which is equivalent to the standard Poisson equation for pressure on a differential level.
A similar form for the pressure equation is presented in [10]. In that paper, the Laplacian of the pressure is
balanced using the divergence of the momentum equations

∇ · uuu = ǫ [∇2p+ ∇ · (Cuuu − ggg)]. (6)

On the discrete level, the right-hand side of equation (6) does not necessarily vanish. Here, ǫ is a balancing
parameter that can be varied. As noted in [10], this parameter is not related to the time step ∆t.

The pressure equation used in [15] for the solution of the steady-state problem is similar to (6). The
balancing coefficient in the pressure equation is equal to the viscosity ν. As well, a balancing coefficient γ
for the term ∇ · uuu is used as in [16], so that the modified pressure equation becomes

γ(∇ ·uuu) = ν[∇2p+ ∇ · (Cuuu− ggg)]. (7)

We find that using a balanced pressure equation such as equation (7) in combination with conservative
difference approximations (see Section 4.1) improves the convergence of the difference problem considerably.
Conservative discretizations are not considered in [10], nor is a splitting procedure used to improve the
efficiency of the solver for the linear systems of equations.

3

It should be mentioned that the formulation of the problem (1)–(2) is equivalent to the formulation with
the pressure equation (1), (7) if and only if the continuity equation is satisfied on the boundary, namely the
following boundary conditions are satisfied

uuu
∣

∣

∂Ω
= uuub(t), ∇ · uuu

∣

∣

∂Ω
= 0. (8)

3. Time Discretization

3.1. Momentum Equation

The use of a fully implicit approach for time stepping in the momentum equation (3), such as the θ-scheme
as applied to stiff systems with 0 < θ ≤ 1, leads to the solution of the following nonlinear stationary equation
at each time step

uuu(xxx, t+ ∆t) − uuu(xxx, t)

∆t
+ θ[(C + L) uuu(xxx, t+ ∆t) + ∇p(xxx, t+ ∆t)]

+ (1 − θ)[(C + L) uuu(xxx, t) + ∇p(xxx, t)]
= θ ggg(xxx, t+ ∆t) + (1 − θ)ggg(xxx, t),

(9)

where ∆t = tn+1 − tn is the time step and θ is the implicitness parameter. The time discretization (9) for
the momentum equation is the second-order Crank–Nicolson method if θ = 1/2, the backward Euler method
for θ = 1, and the (explicit) forward Euler method when θ = 0.

In this work, only implicit schemes are considered. Therefore, θ 6= 0, and equation (9) can be written in
the following form

1

θ∆t
uuu(xxx, t+ ∆t) + (C + L) uuu(xxx, t+ ∆t) + ∇p(xxx, t+ ∆t) = Fuuu(xxx, t), (10)

where

Fuuu(xxx, t) =
1

θ∆t
uuu(xxx, t) + ggg(xxx, t+ ∆t) +

1 − θ

θ
[ggg(xxx, t) − (C + L) uuu(xxx, t) −∇p(xxx, t)] .

The stability of the θ-method depends on θ. In the particular case of linear constant-coefficient stiff
systems, the constraint for unconditional stability is 1/2 ≤ θ ≤ 1.

3.2. Pressure Equation

In addition to using equation (7) in place of the continuity equation (2), a pressure equation can also
be derived from the momentum equation discretized in time. We consider the following two approaches for
discretizing pressure.

3.2.1. Pressure equation obtained from time-discretized momentum equation (10)
To derive a pressure equation, we apply the divergence operator to equation (10) and note that the

continuity equation ∇ · uuu(xxx, t + ∆t) = 0 must be satisfied as well as ∇ · (L uuu) = L (∇ · uuu) = L (0) = 0, a
property that stems from the linearity of the operator L = −ν∇2. It follows that

1

θ∆t
[∇ · uuu(xxx, t+ ∆t)] + ∇ · [C uuu(xxx, t+ ∆t)] + ∇2p(xxx, t+ ∆t) = ∇ · [Fuuu(xxx, t)]. (11)

After multiplying equation (11) by ν, we obtain the following pressure equation

L p(xxx, t+ ∆t) − ν

θ∆t
[∇ · uuu(xxx, t+ ∆t)] = ν∇ · [C uuu(xxx, t+ ∆t)] − ν∇ · [Fuuu(xxx, t)]. (12)

We introduce a coefficient γ = − ν
θ∆t that controls the stability of the system; so the pressure equation

becomes

L p(xxx, t+ ∆t) + γ[∇ · uuu(xxx, t+ ∆t)] = Fp(xxx, t), Fp(xxx, t) = ν∇ · [C uuu(xxx, t+ ∆t) − Fuuu(xxx, t)]. (13)

4

3.2.2. Pressure equation obtained from continuous momentum (7)
As an alternative, we also consider equation (7), which after discretization in time is

L p(xxx, t+ ∆t) + γ[∇ · uuu(xxx, t+ ∆t)] = Fp(xxx, t), Fp(xxx, t) = ν∇ · [C uuu(xxx, t+ ∆t) − ggg(xxx, t)], (14)

where γ is chosen to enhance convergence and stability. The choice γ = 1 works well in practice.

3.3. Boundary Conditions

The boundary conditions (8) must be also discretized in time; they then take the form

uuu(xxx, t+ ∆t)
∣

∣

∂Ω
= uuub(t+ ∆t), ∇ · uuu(xxx, t+ ∆t)

∣

∣

∂Ω
= 0. (15)

3.4. Nonlinear Stationary Problems

Finally, after the discretization in time, in order to obtain the solution at the next time level, it is necessary
to solve the nonlinear stationary problem (10), (15), (5) evolved to the current time level, and (13) (or (14)).
Although equations (13) and (14) are different, we use the generic variables γ and Fp in the remainder of
the paper; which definition is being used should be clear from the context.

The system of equations (10), (13) can be written in a matrix form as

L+ C +
1

θ∆t
grad

γ div L

uuu

p

 =

Fuuu

Fp

 , (16)

where uuu and p are evaluated at xxx and t+ ∆t.
Discretization in space of (16), with appropriate boundary conditions added, leads to the solution of a

nonlinear algebraic system that must be solved iteratively. In the process of solving the nonlinear system,
a system of linear equations must be solved at each iteration. In the case of the fully implicit approach for
time discretization, the matrix obtained after spatial discretization of the system is not symmetric positive
definite, in contrast to systems arising from an explicit treatment of the convective term. Therefore, the
choice of discretization in space is crucial for the stability of the scheme. Because the equations to be solved
are conservation laws, it is highly desirable that the numerical scheme should also preserve these laws [17].

Stabilization techniques are usually based on perturbed versions of the continuity equation. There exist
many variations of pressure stabilization techniques [3]; see [12] and [11] for reviews. Although not originally
derived as stabilization methods, the artificial incompressibility method [4] and the penalty method [18] can
be also placed into this category. Because they are usually used with finite element discretizations, these
methods aim at stabilizing pressure oscillations and allowing standard grids and elements.

Most popular time-stepping methods, including fully implicit methods such as the backward Euler method,
typically do not solve the resulting system in a fully coupled manner. Velocity and pressure are usually
decoupled, and this requires imposition of pressure boundary conditions. Solving the system (16) in a fully
coupled approach is preferred because it preserves the implicitness of the scheme, but such solvers require
further development. Large linear systems must be solved as part of this process. Direct linear solvers, such
as Gaussian elimination, are generally not efficient for 3D problems. Iterative strategies, such as BiCGStab
and GMRES, combined with suitable preconditioners, can be effectively used for solving the linear systems
of equations that arise. Coordinate splitting is also effective because it can reduce the number of operations
for solving these linear systems by an order of magnitude [8,14].

4. Difference problem

4.1. Analytical properties

No matter what iterative strategy is used, in order to create a difference scheme that solves the problem
accurately and efficiently, it is highly desirable for the scheme to satisfy the following analytical properties:

5

(i) Conservation properties
Following [17], we call an operator T [ϕ] conservative if it can be written in divergence form T [·] =

∇ · (S[·]), where ϕ(xxx, t + ∆t) is a function, such as a velocity component, kinetic energy, etc., and
S is an operator that can be used to express the system of equations in an equivalent form on the
continuous level provided the continuity equation is satisfied. In general, however, these forms are not
equivalent on the discrete level.

Assuming the continuity equation (2) is satisfied, it is known that [17]
(a) The mass is conserved a priori for the exact solution because the continuity equation (2) appears

in divergence form.
(b) The momentum is conserved a priori for the exact solution; the pressure and viscous terms are

conservative a priori; the convective term is also conservative a priori.
(c) The square of a velocity component ϕ2 is of importance in case of coordinate splitting. If the

convective term is written in a skew-symmetric form (4), then it conserves ϕ2. For instance, in
direction x

ϕ Cx[ϕ] =
ϕ

2

[

∂(ϕu)

∂x
+ u

∂ϕ

∂x

]

=
1

2

∂(ϕ2u)

∂x
·

The convective term in a skew-symmetric form is conservative a priori, whereas the pressure
and viscous term are not conservative.

(d) The kinetic energy K
def
= 1

2 (u2+v2+w2): The skew-symmetric convective term is energy conserva-
tive, the pressure term is energy conservative, whereas the viscous term is not energy conservative.

In addition to conservation we also ensure that the scheme satisfies the following properties:
(ii) Compatibility for Poisson’s equation for pressure.
(iii) Commutativity of the Laplacian and divergence operators.
(iv) Consistency between gradient and divergence operators.
(v) A velocity field that is solenoidal at each time step; i.e., ∇ · uuu = 0.

Satisfaction of properties (i)–(v) leads to excellent l2-stability of the scheme [16].

4.2. Coordinate Operator Splitting

We consider a flow in a region with rectilinear boundaries in Cartesian coordinates. The boundary condi-
tions derived from (15) in 3D take the form

∂u

∂x

∣

∣

∣

∣

(x=c,y,z,t+∆t)

= ψ1(y, z, t+ ∆t),

∂v

∂y

∣

∣

∣

∣

(x,y=c,z,t+∆t)

= ψ2(x, z, t+ ∆t),

∂w

∂z

∣

∣

∣

∣

(x,y,z=c,t+∆t)

= ψ3(x, y, t+ ∆t),

where (x = c, y, z, t+∆t), (x, y = c, z, t+∆t), and (x, y, z = c, t+∆t) represent boundary points, c is a generic
constant meant to denote the constant co-ordinate values on the boundary, and ψi, i = 1, 2, 3 are known
functions. We keep the coupling between the pressure and the respective velocity component through the
boundary conditions at each fractional step. This allows us to construct efficient implicit splitting schemes.

The stationary system of equations (16) can be written in the following general form

A vvv = F, (17)

where vector vvv = (uuu, p)T, A is the coefficient matrix in (16), and F = (FT
uuu , F

T
p)T.

We construct an iterative scheme based on coordinate splitting by introducing the operators Ai consisting
of derivatives with respect to a particular direction x, y, or z. Then, the operator A can be written as
A = A1 + · · · +Ad, where d is equal to the number of spatial dimensions.

6

The splitting procedure used here is a generalization of the scheme of Douglas and Rachford [8]. After
regularization with a derivative with respect to artificial time (or false transient) s [13], the solution of (17)
can be obtained as

vvvn+1/d − vvvn

∆s
+A1vvv

n+1/d +

l
∑

i=2

Aivvv
n = Fn

vvvn+i/d − vvvn+(i−1)/d

∆s
+Ai(vvv

n+i/d − vvvn) = 0, i = 2, . . . , d.

(18)

In equations (18), ∆s is a regularization parameter that can be chosen (usually between 0.05 and 0.5 to
ensure and/or accelerate the convergence of the iterative scheme; Fn is the right hand side F at iteration
n. The solution vvvn+1 of equations (18) approximates the solution vvv of equation (17).

In 3D, the splitting equations take the form

(I + ∆s A1)vvv
n+1/3 = vvvn − ∆s (A2 +A3)vvv

n + ∆s Fn,

(I + ∆s A2)vvv
n+2/3 = vvvn+1/3 + ∆s A2 vvv

n,

(I + ∆s A3)vvv
n+1 = vvvn+2/3 + ∆s A3 vvv

n.

(19)

In (19), I is the identity matrix of size (d+ 1) times the number of unknowns.
It should be noted that the vectorial splitting procedure does not eliminate iterations for finding the

solution of the nonlinear system (17). The splitting is used for the purpose of reducing the number of
operations necessary to obtain a sufficiently accurate approximation to vvv.

4.3. Spatial Discretization

We discretize the differential equations and boundary conditions such that the numerical scheme preserves
the integral properties of the underlying continuous problem. Standard central three-point differences are
used for the second derivatives that inherit the negative definiteness of the respective differential operators.
The first derivatives for pressure are discretized with central second-order differences.

The grid is staggered in each direction; i.e., it is staggered for u in the x-direction, etc. For boundary
conditions involving derivatives, this allows the use of second-order central differences with two-point stencils.
In three dimensions, we denote the number of main grid lines (which are the grid lines for p) in the x-, y-
and z-directions respectively by Nx, Ny, and Nz. The coordinates of the grid points are denoted (xi, yj , zk)
for i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny, k = 1, 2, . . . , Nz. The grid spacings are given by hp

x,i = xi+1 − xi,
i = 1, 2, . . . , Nx − 1, hp

y,j = yj+1 − yj , j = 1, 2, . . . , Ny − 1, and hp
z,k = zk+1 − zk, k = 1, 2, . . . , Nz − 1. The

grid spacings for the function u in direction x are defined as

hu
x,1 = hp

x,1, h
u
x,i = 1

2 (hp
x,i + hp

x,i−1) for i = 2, . . . , Nx − 1, and hu
x,Nx

= hp
x,Nx−1,

with the spacings for v in direction y and for w in direction z defined similarly. The pressure is sampled at
the points labelled by •; function u at ◦; function v at ∗, and function w at ⋄. We denote

pi,j,k = p(xi, yj , zk), ui,j,k = u(xi − 1
2h

p
x,i−1, yj, zk),

vi,j,k = v(xi, yj − 1
2h

p
y,j−1, zk), wi,j,k = w(xi, yj , zk − 1

2h
p
z,k−1).

Also, we keep the coupling between the pressure and the respective velocity component through the
boundary conditions at each fractional step. This allows us to construct a robust implicit splitting scheme
with excellent l2-stability.

The first derivatives for pressure at the mesh-point labelled by ◦, ∗, and ⋄ as

∂p

∂x

∣

∣

∣

∣

◦

≈ pi,j,k − pi−1,j,k

hp
x,i−1

,
∂p

∂y

∣

∣

∣

∣

∗

≈ pi,j,k − pi,j−1,k

hp
y,j−1

,
∂p

∂z

∣

∣

∣

∣

⋄

≈ pi,j,k − pi,j,k−1

hp
z,k−1

·

On the other hand, the derivatives ∂u/∂x, ∂v/∂y, and ∂w/∂z in ∇ · uuu at each interior mesh-point labelled
by “•” are approximated as

7

∂u

∂x

∣

∣

∣

∣

•

≈ ui+1,j,k − ui,j,k

hu
x,i

,
∂v

∂y

∣

∣

∣

∣

•

≈ vi,j+1,k − vi,j,k

hv
y,j

,
∂w

∂z

∣

∣

∣

∣

•

≈ wi,j,k+1 − wi,j,k

hw
z,k

·

The variables u, v, and w in F in (17) are evaluated at the previous iteration.
We consider second-order conservative approximations of the nonlinear operators on a uniform staggered

grid that are akin to the ones proposed by Arakawa [1] for the streamline-vorticity formulation for ideal flows.
A similar idea in terms of primitive variables was described in [14], with special reference to operator-splitting
schemes, and implemented in [6] on a uniform grid and in [15] on a non-uniform grid. On a non-uniform
staggered grid, we employ the following conservative differences for the nonlinear terms in the equation for
velocity component u:

Ch
x [u] =

(

∂(u2)

∂x
− u

2

∂u

∂x

)
∣

∣

∣

∣

◦

=
un

i+1/2,j,kui+1,j,k − un
i−1/2,j,kui−1,j,k

hu
x,i + hu

x,i−1

,

Ch
y [u] =

(

∂(uv)

∂y
− u

2

∂v

∂y

) ∣

∣

∣

∣

◦

=
vn

i−1/2,j+1,kui,j+1,k − vn
i−1/2,j,kui,j−1,k

hp
y,j + hp

y,j−1

,

Ch
z [u] =

(

∂(uw)

∂z
− u

2

∂w

∂z

)∣

∣

∣

∣

◦

=
wn

i−1/2,j,k+1ui,j,k+1 − wn
i−1/2,j,kui,j,k−1

hp
z,k + hp

z,k−1

,

where un
i+1/2,j,k = (un

i+1,j,k + un
i,j,k)/2, un

i−1/2,j,k = (un
i,j,k + un

i+1,j,k)/2, etc. Conservative differences for the
nonlinear terms in the equations for v and w are similar.

After the discretization for each fractional step, we linearize and solve a linear algebraic system in a similar
manner to [15]. The multi-diagonal systems are solved by means of a specialized Gaussian-elimination solver
[5] with pivoting that is a generalization of the Thomas algorithm [19]. The algorithm for solving the
difference equations is also easily vectorized; the sequence of one-dimensional problems (penta- and tri-
diagonal systems) at each time step can be solved in parallel.

4.4. Algorithm

The numerical algorithm for solving the problem is
(i) Initialization

(a) Set values of the problem parameters:
dimension; steady/unsteady problem; ν; γ; geometry information; initial time t0; final time T

(b) Set values of the time-stepping method parameters:
implicitness parameter 0 < θ ≤ 1; time step ∆t; number of time steps nt

(c) Define grid:
Specify Nx, Ny, and Nz (if applicable) for uniform grid or list of points for non-uniform grid

(d) Set values of the iterative solver parameters: tolerance ε for the uniform norms of residuals of the
equations for velocity components and regularization parameter ∆s

(e) Set initial conditions at t = t0. Set time t := t+ ∆t
(ii) Do While t ≤ T

(a) Update the boundary conditions at t
(b) Update the right-hand side F from (17) at t
(c) Solve the stationary problem (10), (13), and (15) to find the values of uuu and p at the time level t

with vectorial operator splitting (18). The following criterion is used for terminating the iterations

max{Ru(s), Rv(s), Rw(s)} ≤ ε, where Rf(s)
def
=

max
i,j,k

|fn+1
i,j,k − fn

i,j,k|

∆smax
i,j,k

|fn+1
i,j,k |

·

(d) Set time t := t+ ∆t
(e) End Do

(iii) End

8

5. Numerical Results

We now verify the convergence properties of the method in space and time. All computations are per-
formed using double-precision arithmetic. No boundary conditions are imposed on the pressure p, and, unless
otherwise specified, we use ∆s = 0.05, ε = 10−10, γ = 1, and t0 = 0. We have tried calculations with different
values of γ and have found that γ = 1 is a good choice in most cases. If γ is chosen to be close to zero or
negative, the method may become unstable. In general, γ is varied to enhance stability.

5.1. Convergence of Time Discretization

In order to validate convergence of the 3D unsteady algorithm, we perform a convergence test with the
following analytical solution of the incompressible Navier–Stokes equations

u = v = w = e−t, p = (x+ y + z) e−t, (20)

in the unit square. Because all functions in (20) are linear in x, y, and z, this test allows us to directly verify
the convergence rate of the time discretization.

We use fixed values for the following problem parameters: ν = 1/15; hx = hy = hz = 1/16; and T = 1.

Figure 1 presents the l2-norms of the residuals R(s) =
√

(Ru(s))2 + (Rv(s))2 + (Rw(s))2 versus s (s = n∆s,
where n is the iteration number in the stationary problem solver). We clearly see the convergence of the
vectorial operator splitting iterations for finding the solution at time T = 1 starting from time t = 0 for two
different time steps, ∆t = 1 (left) and ∆t = 0.5 (right).

10-10

10-8

10-6

10-4

10-2

100

 0 5 10 15

R(s)

s

10-10

10-8

10-6

10-4

10-2

100

 0 5 10 15 3 8 13

R(s)

s

Fig. 1. Residual norm R(s) for ∆t = 1 with one step in time (left) and ∆t = 0.5 with two steps in time (right).

The maximum, average, and l2-norms of the difference between the numerical solution and the exact
solution (20) at the final time are on the order of the round-off error in double-precision arithmetic. Figure 2
shows the l2-error taken over all grid points for the numerical solution uuu and the exact solution uuu(xxx, T)

l2−error
def
= ‖uuu− uuu(·, T)‖2 =

√

(u− u(·, T))2 + (v − v(·, T))2 + (w − w(·, T))2. (21)

The errors are small due to fact that the solution is only linearly dependent in space. The l2-error for uuu
decreases for 2−8 = 0.125 ≤ ∆t ≤ 1 and increases for time steps ∆t ≤ 2−16. This is not abnormal for
numerical errors and is due to the increased number of arithmetic operations. The errors are all on the order
of round-off errors.

9

 1e-014

 1e-013

 1e-012

 0 0.25 0.5 0.75 1

l2 -e
rr

or

∆ t

Fig. 2. The l2-error for uuu versus time step ∆t.

5.2. Convergence of Spatial Discretization

To confirm the convergence of the spatial discretization of the unsteady algorithm, we perform calculations
on a uniform grid h = hx = hy = hz for a problem with the following exact solution

u =
√

2 exp(−
√

2x) cos(y + z), v = w = exp(−
√

2x) sin(y + z), p = − exp(−2
√

2x), (22)

in the unit square. We choose ν = 1/15, ∆t = 1, T = 2, and vary the spacing h = hx = hy = hz. As can be
expected for a steady-state solution, the changes (if any) in the numerically obtained values of the sought
functions at t = 1 and t = 2 are small, i.e., on the order of round-off error.

We also present results for the calculated maximum absolute value of the divergence ∇ · uuu and the l2-

error for uuu defined in (21) at time T as well as their convergence rates, calculated as α = log2

∣

∣

∣

l2-error(h)
l2-error(2h)

∣

∣

∣
;

see Table 1. It can be seen that the convergence rate for the divergence is second order, and in fact the
convergence rate appears to be higher than second order for the l2-errors for uuu.

Table 1
Discretization errors as a function of h = hx = hy = hz.

1

h
h2

maxi,j,k |∇ · uuu| l2-error

value α value α

8 1.56250 × 10−2 3.90701 × 10−3 - 3.86078 × 10−6 -

16 3.90625 × 10−3 9.76610 × 10−4 2.00021138 4.91198 × 10−7 2.974512989

32 9.76563 × 10−4 2.44144 × 10−4 2.00005284 5.02422 × 10−8 3.289334615

64 2.44141 × 10−4 6.10353 × 10−5 2.00001321 4.71955 × 10−9 3.412176909

All the results described in Section 5.1 and Section 5.2 use the fully implicit backward Euler scheme.
They confirm the expected convergence properties of the method. The convergence results for such large
time steps demonstrates the excellent stability of the algorithm.

5.3. Convergence of Overall Method

Finally, in order to verify the convergence of the overall method in both time and space, we use a third
test with a 3D analytical solution presented in [9]. The particular solution used here is

10

u = − [ex sin(y + z) + ez cos(x+ y)]e−t]

v = − [ey sin(z + x) + ex cos(y + z)]e−t]

w = − [ez sin(x+ y) + ey cos(z + x)]e−t]

p = − 1

2
[e2x + e2y + e2z + 2 sin(x+ y) cos(z + x)ey+z

+ 2 sin(y + z) cos(x+ y)ez+x + 2 sin(z + x) cos(y + z)ex+y]e−2t

(23)

in Ω = [−0.5, 0.5]3. In this test the values of the problem parameters are specified as ν = 1/15, ∆t = 0.25,
h = 2−4, and T = 1.

Unlike the numerical solution, the analytical solution (23) does not depend on the viscosity ν nor do the
analytical solutions (20) and (22). However, it is a good problem for benchmarking because it does depend
on both time and space. There are terms that are growing exponentially with the increase of x, y, and z.
With regard to dependence on time, all of the analytic solutions used here are decreasing in time due to
terms such as e−kt, where k is a positive constant equal to 1 or 2.

Regardless of the fact that the analytical functions do not depend on the parameter ν, the numerical scheme
may depend on ν due to the discretization. We mentioned that some of the properties of the differential
operators are preserved by their discrete counterparts at each iteration. However, many of the conservation
properties are subject to fulfillment of the continuity equation, or they are satisfied upon convergence of
the iterations. The difference scheme described here is implicit for the momentum equation (except for the
convective term, which requires linearization) and the boundary conditions. The scheme is also implicit for
all operators in the pressure equation except for ∇ · (Cuuu(xxx, t + ∆t)). This term is taken from the previous
iteration in the stationary problem solver. After convergence, it satisfies the equations at the new time level;
however, this may cause some problem with convergence of the iterative process. In fact, we have observed
instability in the calculations for ν = 1/15 with (23). The iterative process diverges for some values of ∆t
and ∆s if h is small. Again, this can be controlled to some extent by choosing appropriate (typically smaller)
values of ∆s.

The test problems in Section 5.1 and Section 5.2 are not suitable for testing the Crank–Nicolson method
as well as the two versions of pressure equation because the terms that would make any difference are not
present in these test problems. Even the analytical solution (23) does not allow us to verify the second-order
convergence in time of the Crank–Nicolson method because the spatial discretization errors dominate when
∆t is small.

We have also performed calculations for θ = 0.5 with the two pressure equations (13) and (14) derived in
Section 3.2.1 and Section 3.2.2, respectively. The algorithm performs comparably (there are small differences
in the divergence for larger time steps) if equation (13) is used for pressure.

Table 2
l2-errors with equation (14), h = 2−4, ν = 1/15.

∆t θ = 1.0 θ = 0.5

1 5.78908 × 10−4 9.97307 × 10−4

0.5 4.98314 × 10−4 2.95910 × 10−4

0.25 4.51934 × 10−4 4.03451 × 10−4

0.125 4.25608 × 10−4 3.98005 × 10−4

The results for the l2-error from calculations using pressure equation (14) and for θ = 1 and θ = 0.5 are
presented in Table 2. Although the convergence in time cannot be observed from these results because the
errors are dominated by the spatial component, it can be seen that the l2-errors are small, even for relatively
large h, attesting to the accuracy and stability of the overall method.

6. Conclusion

We have demonstrated the convergence for a numerical method for the unsteady incompressible Navier–
Stokes equations that is based on a fully implicit time integration and a conservative spatial discretization.

11

The resulting discrete system is solved efficiently using vectorial operator splitting. The most important
properties of the method are the overall stability due to the implicit treatment of the time-stepping and
boundary conditions and the conservative spatial discretization. The results from numerical experiments we
give indicate that the discretization errors are dominated by the spatial component because the spatial step
size h is relatively large. Nonetheless, the l2-errors are small and suggest the method has excellent stability
properties. Future work will focus on the development and investigation of higher-order discretizations and
comparison with other existing methods.

Acknowledgment

This work was partially supported by MITACS and NSERC.

References

[1] A. Arakawa, Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional
incompressible flow. Part I. J. Comp. Phys. 1, 119–143 (1966).

[2] U. M. Ascher, L. R. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations,
SIAM, 1998.

[3] F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods, Berlin:Springer, 1991.

[4] A. J. Chorin, Numerical Solution of the Navier-Stokes Equations, Mathematics of Computation 22(104), 745–762 (1968).

[5] C. I. Christov, Gaussian Elimination with Pivoting for Multidiagonal Systems. University of Reading, Internal Report 4,
1994.

[6] C. I. Christov, R. S. Marinova. Implicit scheme for Navier–Stokes equations in primitive variables via vectorial operator
splitting. In M. Griebel, O. P. Iliev, S. D. Margenov, and P. S. Vassilevski, editors, Notes on Numer. Fluid Mech. 62,
251–259, Vieweg (1998).

[7] C. R. Doering, The 3D Navier-Stokes Problem, Annu. Rev. Fluid Mech., 41, 109128 (2009).

[8] J. Douglas, H. H. Rachford, On the numerical solution of heat conduction problems in two and three space variables,
Trans. Amer. Math. Soc. 82, 421–439 (1956).

[9] C. R. Ethier and D. A. Steinman, Exact fully 3D Navier-Stokes solutions for benchmarking, International Journal for
Numerical Methods in Fluids 19(5), 369–375 (1994).

[10] M. Hafez, M. Soliman, Numerical Solutions of the Incompressible Navier-Stokes Equations in Primitive Variables,
Incompressible computational fluid dynamics, Cambridge University Press, Editors: Max D. Gunzburger and Roy A.
Nicolaides, 183–201, 1993.

[11] D. Kwak, C. Kiris, C. S. Kim, Computational challenges of viscous incompressible flows, Computers & Fluids 34, 283–299
(2005).

[12] H. P. Langtangen, K.-A. Mardal, R. Winther, Numerical Methods for Incompressible Viscous Flow, Advances in Water
Resources 25, 1125–1146 (2002).

[13] G. D. Mallison and G. de Vahl Davis. The method of false transients for the solution of coupled elliptic equations, Journal
of Computational Physics 12, 435–461 (1973).

[14] G. I. Marchuk, Methods of Numerical Mathematics, Springer, Berlin, 1982.

[15] R. S. Marinova, C. I. Christov, T. T. Marinov, A Fully Coupled Solver for Incompressible Navier-Stokes Equations, Int.
Journal of Computational Fluid Dynamics, 17(5), 371–385 (2003).

[16] R.S. Marinova, T. Takahashi, H. Aiso, C.I. Christov, T.T. Marinov, Conservation Properties of Vectorial Operator Splitting,
Journal of Computational and Applied Mathematics, 152(1–2), 289–303 (2003).

[17] Y. Morinishi, T.S. Lund, O.V. Vasiliev, P. Moin, Fully conservative higher order finite difference schemes for incompressible
flow, Journal of Computational Physics 143, 90–124, (1998).

[18] J. N. Reddy, On Penalty function methods in the finite element analysis of flow problems, International Journal for
Numerical Methods in Fluids 18, 853–870 (1982).

[19] L. H. Thomas, Elliptic Problems in Linear Difference Equations over a Network, Watson Scientific Computing Laboratory,
Columbia University, New York, 1949.

[20] N. N. Yanenko. Method of Fractional Steps. Springer, Berlin, 1971.

12

