IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING JOURNAL , VOLXX, NO. XX, XX 1

The secrets to the success of the Rush—-Larsen
method and its generalizations

Megan E. Marsh, Saeed Torabi Ziaratgahi, Raymond J. Spiteri

Abstract—One of the most popular methods for solving the subsystems and solves each separately. In particular, when
ordinary differential equations (ODEs) that describe the d/namic  solving the monodomain or bidomain equation numerically,
behaviour of myocardial cell models is known as the Rush— a system of ODEs for the averaged electrical activity of a

Larsen (RL) method. Its popularity stems from its improved .
stability over integrators such as the forward Euler (FE) mehod number of myocardial cells must be solved at each node of

along with its easy implementation. The RL method partitiors the discretized spatial domain. Accordingly, the efficiené

the ODEs into two sets: one for the gating variables, which the numerical method used for solving the ODEs for cell
are treated by an exponential integrator, and another for e models plays an important role in solving the monodomain
remaining equations, which are treated by the FE method. or bidomain equation efficiently.

The success of the RL method can be understood in terms of . . . . .
its relatively good stability when treating the gating variables. In this study we consider the numerical solution of 37 yerl-
However, this feature would not be expected to be of benefit fied myocardial cell models from the CellML model repository
on cell models for which the stiffness is not captured by the [3]; see also [4] and [5]. The range of cell models encompasse
gating equations. We demonstrate that this is indeed the cas widely varying degrees of stiffness that can be charaadriz
on a number of stiff cell models. We further propose a new p, analyzing the eigenvalues of the Jacobian matrix [4]. The

partitioned method based on the combination of a first-order | | of stiff f ticul del det . heth
generalization of the RL method with the FE method. This new evel of stiiiness of a paricular model delermines whekaer

method leads to simulations of stiff cell models that are ofin one Numerical method can solve the model efficiently.
or two orders of magnitude faster than the original RL method. One of the most popular methods for solving the ODEs that

describe the dynamic behaviour of myocardial cell models is

Index Terms—partitioned methods; efficient numerical meth- known as the Rush-Larsen (RL) method [6]. Its popularity
ods; simulation of electrophysiological models; Rush-Lasen stems from its improved stability properties over integrat

method; exponential integrator; ordinary differential equations;  sych as the forward Euler (FE) method coupled with its easy

stiffness. implementation. There have been recent attempts to build

on the success of RL [7], [8]. In particular, a generalized

I. INTRODUCTION RL method of second order, which we denote by GRL2,

According to the World Health Organization, ischaemi®as proposed in [7], where it was shown to outperform
heart disease was the single leading cause of death overdlon three cell models. A generalized RL method of first
in its member countries in 2008 [1]. Many heart problems cdtfder, which we denote by GRL1, was also described but not
be linked to abnormalities in the electrical activity in theart. investigated. GRL2 only outperformed the explicit midgoi

The electrophysiological behaviour of the heart can be matfle, a standard second-order explicit Runge—Kutta method
ematically modelled by differential equations. In partisuthe the single stiff cell model used in the study. This quatati
electrical activity and ionic currents of a single heart cain characterization of performance of GRL2 relative to RL and
be described by a system of ordinary differential equatiofi§ is confirmed in [4] (see also [5]) on 37 cell models; i.e., RL
(ODEs). These ODEs are coupled with a system of partigl the most efficient method on the majority of cell models,
differential equations (PDEs) in order to model the proﬂj@@a with GRL2 being most successful on the stiffest ones. This
of the electrical activity throughout the entire heart viee t also leads to the observation that most cell models are only
monodomain or bidomain equation [2]. moderately stiff, lending a way to understand the success of

A common way to solve the monodomain or bidomaifRL as an efficient general-purpose method.
equation is via operator splitting, an algorithm that gatigr ~ The RL method is gpartitioned method [9] for solving

splits a system of differential equations into a number &DEs. It partitions the ODEs into two sets: one for the gating
variables, which are treated by an exponential integraiod,
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tial integration in other applications, in particular pletns
where the eigenvalues of the Jacobian of the solution havedvm 1 Mien
large negative real parts (such as for spatial discretizatof o - o Z I;(Vin, m, c,t), (29)
parabolic problems) or are large and purely imaginary (asch . ™ oi=1
in highly oscillatory problems); e.g., see [14] for an inptle acj .
survey. The exponential method used as part of the RL method dt 953510, Vim 1), J=120ne, (2D)
corresponds to the exponential Euler method [14] with the @Mk
Jacobian matrix approximated by its diagonal. Interesting  dt
this appears to be the sense in which exponential integratio Equation (2a) describes the evolution of the transmembrane
was proposed in [11]; however it falls short of the moderpotential V,,,, where I; is the total transmembrane current
definition of the method. carried by ion: of n;,, ions andC,, is the capacitance of
The success of the RL method can be understood in terthe cell membrane per unit area. Equation (2b) describes the
of the relatively good stability provided by the exponelpart dynamic variations inn. intracellular ionic concentrations.
of the integration when treating the gating variables. Hmve Equation (2c) describes the opening and closing:gf ion
this approach may not be expected to work well on cell modetbannels in the cell membrane expressed by the gating \@riab
for which the stiffness is not captured by the gating equmtio vector m with componentsny, where a;, = «a(V;,) and
In this study we focus on the performance of three basit. = 5x(V.,). The ODEs given by (2a) and (2b) are generally
numerical methods, FE, RL, and GRL1. All of these method®nlinear; howeverp, and g, in (2c) are only nonlinear
are first order. The order of a method has an effect on thections ofV;,.
amount of computation required for the method to reach aln this study we consider 37 verified myocardial cell models
given level of accuracy. However, for the purposes of thisom the CellML model repository [3]; see also [4] and [5].
study, we wish to remove any potentially confounding issud@ible | contains the name of each model, the reference to
of order and focus only on issues of stability and stiffnesthe original paper, the total number of variables, the numbe
By analyzing the eigenvalues of the Jacobian matrix of tid gating variables, and a brief description of the model. We
stiff cell models, we find that only a few of the equationgote that the model of Winslow et al. (1999) used in this
are responsible for the stiffness, and in many cases, thetedy has 31 variables, representing a reduced form of the
equations are not associated with gating variables. Intiadgli original model, and is subsequently referred to as Winslow3
the ODEs classified as stiff are in fact not stiff on the entirg Winslow31, the intracellular sodium concentration ame o
interval of integration. Using this information, we constt of the calcium handling mechanisms from the original model
a partitioned method combining GRL1 with FE that handilpre taken as constants [16].
outperforms the three basic methods on five stiff models. ~ An important consideration in the efficient numerical solu-
The remainder of this paper is organized as follows. fiion of differential equations is the conceptstiffness Despite
Section I, we give a mathematical description of myocdrdiés pervasiveness in practice, there is no universally @tece
cell models and briefly discuss stiffness for ODEs. In Sectidheoretical definition of stiffness. In this study, an IVP) (1
lll, we review the three numerical methods considered aif@l considered to be stiff on a time interval with respect to
introduce the partitioned method GRL1/FE that combines a given numerical method and error tolerance when stability
GRL1 with FE. In Section IV, we present the numericalequirements force the numerical method to take smaller
experiments and assess the performance of each methodstep sizes than those dictated by accuracy requiremerits [49
solving cell models. In order to do this, we introduce a ne@wenerally, step sizes required for a non-stiff method appli
error norm to assess the accuracy of numerical solutionelbf do a stiff model are much smaller than accuracy requirements

models. Finally, in Section V, we summarize our conclusiongictate, resulting in a numerical solution that is much more
accurate (and hence more costly to compute) than desired. In

order to reduce computational effort, it is preferred thaps
sizes be chosen based only on accuracy requirements.

A wide range of models has been developed to describeThe cell models considered in this paper range from non-
the electrical currents in various single heart cells,, agial Stiff to moderately stiff to stiff for typical accuracy reme-
cells, ventricular cells, human cells, rat cells, etc. Mt be ments. The level of stiffness of a particular model deteasin
formulated as an initial-value problem (IVP) for a system owvhether a given numerical method can solve the model effi-

= ag(l —my) — Bem, k=1,2,....,n,. (2C)

Il. MYOCARDIAL CELL MODELS

ODEs of the form ciently. The characterization of stiffness in each cell elod
d is therefore important in order to choose the appropriate
d_i" =f(t,y), y(to) = yo- (1) numerical method to efficiently solve that particular moeh

given accuracy. Given the wide range of cell models and their
The component variables of the veciorare dependent on associated levels of stiffness, it is not surprising thasingle

the cell model but they typically include the transmembramaumerical method is the most effective on all the models.

potential, a number of gating variables, and a set of ionic co Related to the stiffness of an IVP (1) are the eigenvalues of

centrations. Many important cell models are derived from ttithe Jacobian matrix] = %(t,y), evaluated over time. The

Hodgkin—Huxley model of a squid giant axon, first proposehagnitude and nature of these eigenvalues (i.e., whetkgr th

in 1952 [15]. This type of model can be written as are real, imaginary, or complex) can provide information as
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TABLE |
SUMMARY OF THE 37 MYOCARDIAL CELL MODELS STUDIED. THREE TYPES OF MYOCARDIAL CELL MODEL VARIANTS(ENDOCARDIAL CELL,
EPICARDIAL CELL, AND M-CELL) EXIST FOR EACH OF THE MODELS MARKED WITH AN ASTERISK

Model Reference Number of Number of Description

variables gating variables
Beeler—Reuter (1977) [17] 8 6 Mammalian ventricle
Bondarenko et al. (2004) [18] 41 8 Mouse ventricle
Courtemanche et al. (1998) [19] 21 15 Human atrium
Demir et al. (1994) [20] 27 10 Rabbit sinoatrial node
Demir et al. (1999) [21] 29 11 Rabbit sinoatrial node
DiFrancesco—Noble (1985) [22] 16 9 Mammal Purkinje fibre
Dokos et al. (1996) [23] 18 8 Rabbit sinoatrial node
Faber—Rudy (2000) [24] 19 12 Guinea pig ventricle
FitzZHugh—Nagumo (1961) [25], [26] 2 0 Nerve membrane
Fox et al. (2002) [27] 13 10 Canine ventricle
Hilgemann—Noble (1987) [28] 15 3 Rabbit atrium
Hund-Rudy (2004) [29] 29 20 Canine ventricle
Jafri et al. (1998) [30] 31 5 Guinea pig ventricle
Luo—Rudy (1991) [31] 8 6 Guinea pig ventricle
Maleckar et al. (2008) [32] 30 12 Human atrium
McAllister et al. (1975) [33] 10 9 Canine Purkinje fibre
Noble (1962) [34] 4 3 Mammal Purkinje fibre
Noble—Noble (1984) [35] 15 8 Rabbit sinoatrial node
Noble et al. (1991) [36] 17 6 Guinea pig ventricle
Noble et al. (1998) [37] 22 8 Guinea pig ventricle
Nygren et al. (1998) [38] 29 12 Human atrium
Pandit et al. (2001) [39] 26 12 Rat left-ventricle
Pandit et al. (2003) [40] 26 13 Rat left-ventricle
Puglisi-Bers (2001) [41] 17 11 Rabbit ventricle
Sakmann et al. (2000)* [42] 21 6 Guinea pig ventricle
Stewart et al. (2009) [43] 20 13 Human Purkinje fibre
Ten Tusscher et al. (2004)* [44] 17 10 Human ventricle
Ten Tusscher et al. (2006)* [45] 19 12 Human ventricle
Wang-Sobie (2008) [46] 35 11 Neonatal mouse ventricle
Winslow31 [47] 31 8 Canine ventricle
Zhang et al. (2000) [48] 15 14 Rabbit sinoatrial node

to the degree of stiffness present in an IVP at a given time.We focus on the performance of three basic methods: FE,
A stiff IVP typically has eigenvalues. with large negative RL, and GRL1. Their formulation is presented in detail and
real parts on some time interval. Such eigenvalues force titvey are assessed in terms of their efficiency in solving the
time stepAt to be small so thadAt is within the stability 37 cell models listed in Table I. The FE and GRL1 methods
region of the numerical method. IVPs that have eigenvaluase subsequently combined into a partitioned method that is
with large imaginary parts also tend to be difficult to solye bmore computationally efficient than the RL method for stiff
standard solvers; however they are not normally considieredcell models.
be stiff according to the classical treatment of stiffness.

The extreme values for the real and imaginary componems Basic methods
of the eigenvalues for the 37 cell models studied are regorte

. . . Given the IVP

in Table Il along with the percentage of time when a complex i

eigenvalue pair was present. For the typical accuraciels wit & f(t,y), y(tn) = ¥, (3)
which we are concerned in this study, the models with small dt

negative real eigenvalues, such as the FitzHugh-Nagufeot, <t < t,41, wherey € RM, f: R x R — RM, and
model, are considered to be non-stiff. Similarly, the medeAt, = t,11 — t,, the FE method approximates (3) by
with large negative real eigenvalues, such as the model of

Pandit et al. (2003) and Winslow31, are considered to bk stif Ynt1 =Yn + Aty £(tn, yn). (4)
The RL method applies the FE method to the ODESs for non-
1. NUMERICAL METHODS gating variables present in (3) but uses a different teakmiq

or the ODEs satisfied by gating variables. These ODEs have

. . f
The solutions to myocardial cell models must generally Bfa torm (2¢) that, for a typical gating variablg can be
obtained through the use of numerical methods. One commaR, . ulated as

numerical method used to solve an IVP (1) is the forward Euler dy Yoo —y (5)
(FE) method. The FE method is a first-order explicit method a 1,

that is widely used because of its ease of implementati(where

However, the FE method is often severely limited by stapilit Qy 1

constraints when problems are stiff. Yoo = y + B, Ty = oy + B,
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TABLE Il
EXTREME VALUES OF THE EIGENVALUES OF THEJACOBIAN FOR EACH CELL MODEL. THE MINIMUM REAL PART OF THE SET OF EIGENVALUES IS
DENOTEDmin(Re(A)) AND THE MAXIMUM REAL PART OF THE SET OF EIGENVALUES IS DENOTEDmax(Re(A)). SIMILARLY , THE MINIMUM AND
MAXIMUM IMAGINARY PARTS ARE DENOTED min(/m(\)) AND max(Im(\)). THE PERCENTAGE OF THE SOLUTION INTERVAL IN WHICH THERE IS AT
LEAST ONE PAIR OF COMPLEX EIGENVALUES IS ALSO REPORTED

Model min(Re(A)) max(Re())) min(Im()\)) max(Im(\)) % Complex
Beeler—Reuter (1977) —8.20E+1 1.55E-2 -1.97E+0 1.97E+0 45
Bondarenko et al. (2004) —8.49E+3 4.51E+0 —2.80E+0 2.80E+0 53
Courtemanche et al. (1998) —1.29E+2 1.87E-1 —4.50E+0 4B0E 82
Demir et al. (1994) —-3.80E+1 4.79E-1 —7.95E-2 7.95E-2 74
Demir et al. (1999) —-3.82E+1 4.81E-1 —7.95E-2 7.95E-2 72
DiFrancesco—Noble (1985) —2.63E+1 1.88E+0 —6.14E-1 6-14E 56
Dokos et al. (1996) —2.99E+1 5.06E-1 -1.19E-1 1.19E-1 97
Faber—Rudy (2000) —1.84E+2 1.37E-2 -5.61E-1 5.61E-1 58
FitzHugh—Nagumo (1961) —4.39E-1 1.78E-1 —4.59E-2 4.59E-2 28

Fox et al. (2002) —4.39E+2 4.44E-2 —4.19E-1 4.19E-1 65
Hilgemann—Noble (1987) -3.25E+1 1.58E-1 —2.25E-1 2.25E-1 25
Hund—Rudy (2004) —1.95E+2 9.22E-1 —3.74E+0 3.74E+0 62
Jafri et al. (1998) —4.42E+3 4.82E+0 —2.35E-1 2.35E-1 47
Luo—Rudy (1991) —1.51E+2 7.01E-2 —4.11E-2 4.11E-2 73
Maleckar et al. (2008) —-4.16E+1 2.42E-1 -3.43E-1 3.43E-1 28
McAllister et al. (1975) —1.83E+2 1.49E+0 -3.02E+0 3.02E+0 68
Noble (1962) —9.80E+0 1.74E+0 -1.28E-1 1.28E-1 24
Noble—Noble (1984) -1.25E+1 4.77E-1 -1.03E-1 1.03E-1 92
Noble et al. (1991) —3.89E+1 4.35E+0 -1.72E-1 1.72E-1 20
Noble et al. (1998) —-3.60E+1 5.71E+0 —2.35E-1 2.35E-1 47
Nygren et al. (1998) —4.03E+1 2.05E+0 -3.88E-1 3.88E-1 24
Pandit et al. (2001) —6.92E+3 4.30E+0 -1.43E+0 1.43E+0 12
Pandit et al. (2003) —7.54E+4 3.87E+0 -9.11E-1 9.11E-1 35
Puglisi-Bers (2001) -1.91E+2 2.22E+0 -1.07E-1 1.07E-1 41
Sakmann et al. (2000) — Endo —2.97E+1 7.21E-1 —7.48E-2 F2A48E 84
Sakmann et al. (2000) — Epi —2.96E+1 6.98E-1 —7.47E-2 T2A7E- 75
Sakmann et al. (2000) — M-cell —2.98E+1 1.98E+0 —7.58E-2 8E-2 72
Stewart et al. (2009) -1.38E-1 3.34E-3 -1.57E-3 1.57E-3 92
Ten Tusscher et al. (2004) — Endo -1.17E+3 1.01E-1 —-4.64E+0 .64E40 17
Ten Tusscher et al. (2004) — Epi -1.17E+3 9.74E-2 —4.70E+0 70E40 18
Ten Tusscher et al. (2004) — M-cell -1.17E+3 9.75E-2 —-4.70E+  4.70E+0 21
Ten Tusscher et al. (2006) — Endo -1.26E+3 4.00E+0 -4.77E+0 4.77E+0 50
Ten Tusscher et al. (2006) — Epi —9.44E+2 2.84E+0 -5.01E+0 0130 51
Ten Tusscher et al. (2006) — M-cell -9.81E+2 4.36E+0 —-4.AE+ 4.64E+0 34
Wang—Sobie (2008) -1.23E+2 1.23E+0 —1.24E+0 1.24E+0 46
Winslow31 —1.84E+4 1.53E+0 —4.22E-1 4.22E-1 63
Zhang et al. (2000) —2.22E+1 1.29E-1 —-1.00E-1 1.00E-1 89

and wheren, = o, (V) and 8, = 8,(V;,). The RL method instead of (8) to get
assumes the transmembrane potenfialis constant over each

step, allowing (5) to be treated as a linear ODE with an exact yi(t) = yni+alt —ta), i=1,2,..., M.

solution given by The numerical solution, which is also exact when
_ Aty 0fi(y)/0y; = 0, is then obtained by
Yn = Yoo + (Un—1 — Yoo)e 7V . (6) A M
. . n i = n7,+ tn7 ':1721"'1 .
The GRL1 method decouples and linearizes the ODE sys- Yntli = Yni T4 !
tem around a poiny = y,, at timet = t,, to obtain In order to use the GRL1 method, the diagonal of the
dy; 9 Jacobian matribof /dy is required. Numerical Jacobians are
"= fi(yn) + =—fi(yn) Wi — Yni), Yi(tn) = yni, (7) used throughout, with a special implementation in practice
dt 6yi . . .

, N because only the diagonal elements are required. This esduc
fOf i=1,2,..., M, where the subscriptdenotes component computational cost because unnecessary components of the
i of a vector. The exact solution of (7) is given by Jacobian matrix are not computed. The finite-difference ap-

Yi(t) = Yo + % (eb(t—tn) _ 1) =12 .M (8 proximation ofdf;(y)/0y; is obtained by

filyn, - yim1, ¥ + Ay yig, - ym) — fily)
wherea = fi(yn) and b = 9f;(y.)/0y;. The numerical Ofi(y)/dyi = A ’

solutiony, 1 at timet = t¢,,,1 is obtained by

whereA = 1078 for double-precision calculations.
Yni1i = Yni+ a (eb(Atn) _ 1) . i=1,2,...,M. (9) The RL and GRL1 methods treat the gating equations (2c)
b similarly. In other words, ify; is a gating variable then (9)
In practice, if|0f;(y)/0y:| < J, whereé = 10~8 for double- reduces to (6). The key difference between the methods is
precision calculations, the limit a8f;(y)/dy; — 0 is used in their treatment of the non-gating variables: GRL1 applie
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an exponential integrator based on local linearizationdn-n x10
gating variables whereas RL uses the FE method. 0
A summary of the three basic numerical methods used fc
this study is presented in Table Ill. We note that the metho
that is the least stable but computationally cheapest pgr st _,| ]
is the FE method and the method that is the most stable b g
computationally costliest per step is the GRL1 method. Thi
tradeoff of stability for computational cost per step isitgb
for numerical methods to solve stiff IVPs. It is often the&as
that the increase in stable step size more than offsetsasere
in computational cost per step, leading to a less expensi
computation (i.e., more efficient method) overall.

-3+ 4

Real parts of eigenvalu
& Iy
T T
L L

!
)
T
I

|

4
T
I

B. Partitioned methods

PCl
-8+ P

By analyzing the eigenvalues of the Jacobian matrix of stif = L o - 01250
cell models, it can be determined that only a few of the ODE Time (ms)
are responsible for the stiffness of the model. This pravide (a) Real parts of eigenvalues of Jacobian over entire tirteval.
a means by which the system of ODEs can be partitioned
into stiff and non-stiff subsystems. This eigenvalue asialy
also reveals on which sub-interval(s) of the entire inteofa
integration the IVP is stiff. This permits a partitioning tife
interval of integration into stiff and non-stiff subinterte. -100f
As examples, we consider the stiff cell models of Pandi
et al. (2003) and Winslow31. The plots of the real parts o=
the eigenvalues of the Jacobian matrix of these two mode § *°
are given in Figures 1 and 2. The negative eigenvalues aig -ssof
their corresponding ODEs are labelled in the figures. Thg_mm
plots also show that the ODEs that capture the stiffness (3
the system are not stiff on the entire interval of integmatio © ~°f
From close examination of the eigenvalues, we find that onl a0
two out of 26 ODEs from the model of Pandit et al. (2003)
(Figure 1(b)) and only two out of 31 ODEs from Winslow31
(Figure 2(b)) are responsible for the stiffness of the madel 5% ‘ ‘
We also identify that the stiffness is approximately caméali 0 %0 ey 200 20
within the subinterval$105, 195] and [0, 40] for the model of
Pandit et al. (2003) and Winslow31, respectively.
Table IV summarizes the relevant attributes of five of thgg. 1. Real parts of eigenvalues of Jacobian over time ferrtiodel of
stiffest models, namely those of Bondarenko et al. (20G4)i J Pandit et al. (2003); stiff variableB-, (—-) and Po; (-—--) are highlighted.
et al. (1998), Pandit et al. (2003), the Endocardial var@nt
Ten Tusscher et al. (2004), and Winslow31. The models of
Pandit et al. (2001) and the Epicardial and M-cell variarits o
the model of Ten Tusscher et al. (2004, 2006) are excludediio In the case of stiff models for which the stiffness is
maximize diversity. The table reports the number of vagablnot captured by gating variables, we expect the RL method
in each model, the number of equations in the stiff subsysteto perform less well because its step size can be adversely
the names of the stiff ODE variables, and the stiff and noimpacted by stability restrictions imposed by the FE method
stiff subintervals. The notation for the stiff ODE variableas being applied to stiff non-gating equations. For such msdel
been unified for the purposes of presentation. we expect a method such as GRL1 that treats stiff non-gating
An important point to note from Table 1V is that the majorityequations with an exponential integration method to outper
of stiff variables identified are not gating variables. Timsans form the RL method. Furthermore we expect a combination
that most of the stiffness of these models is not captured bfithe GRL1 method and the FE method that takes advantage
gating variables. The exception of note is the model of Tesf partitioning the ODE system and time interval into stiffda
Tusscher et al. (2004), which from Table 1l is shown to be theon-stiff subsets to perform even more effectively. Speiify
least stiff of the five models considered. we propose to use the FE method for the entire ODE system on
We expect that the RL method is best suited for thae non-stiff portion of the time domain and the GRL1 method
integration of stiff models for which the stiffness is captd for the stiff variables combined with the FE method for the
by the gating variables, e.g., in the model of Ten Tusscherrain-stiff variables on the stiff subinterval of integratioVe
al. (2004), where the only stiff variable is the gating vhtéa refer to this new partitioned method as GRL1/FE.

0

50|

-150

(b) Close up of real parts of eigenvalues of Jacobian overeetiine interval.
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TABLE Il
SUMMARY OF BASIC NUMERICAL METHODS

Gating variables

Non-gating variables

Method (gating equations) (non-linear equations)

FE FE integrator (4) FE integrator (4)

RL Exponential integrator (9 FE integrator (4)

s Local linearization (7) +
GRL1 Exponential integrator (9 Exponential integrator (9
TABLE IV
STIFF MODELS AND THEIR ATTRIBUTES

Model Size | No. of stiff ODEs Stiff ODE variables Stiff subinterval Non-stiff subinterval
Bondarenko et al. (2004) 41 2 Po, [C& T Jss [20, 75] [0, 20]
Jafri et al. (1998) 31 4 Pc1, [C& T ]ss, Ccan, Ccal [0, 50] [50, 300]
Pandit et al. (2003) 26 2 Po1, Pc1 [105, 195] [0,105] U [195, 250]
Ten Tusscher et al. (2004) — Endo 19 1 m [0, 12] U [290, 400] 12,290
Winslow31 31 2 Pci1, [C& T ]ss [0, 40] 40, 300

C1
_._[ca®
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50 100 150

200

Time (ms)

250 300

(a) Real parts of eigenvalues of Jacobian over entire tirezval.
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Fig. 2. Real parts of eigenvalues of Jacobian of the modeklivB1; stiff
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variables Po; (—-) and [Ca?t]ss (-—--) are highlighted.

IV. NUMERICAL EXPERIMENTS

In this section, we begin by introducing an error norm that
is used to quantify the accuracy of a numerical solution of a
cell model. We assess its performance in terms of relighbilit
compared to another commonly used error norm. We then
assess the performance of the three basic numerical methods
FE, RL, and GRL1 on the 37 cell models listed in Table I. In
the spirit of work-precision analysis, e.g., [9], the penfiance
of a method is measured in relation to the least amount of CPU
time required to achieve a specified error tolerance. Birved!
assess the performance of the proposed GRUHEHEnethod
on the five stiffest cell models from Table I.

A. Mixed Root-Mean-Square Error Norm

In order to evaluate the accuracy and efficiency of numerical
methods for solving a myocardial cell model (2) over the
interval t € [to,ts], it iS necessary to have a measure of
the accuracy of the numerical solution. This is normally &on
by computing an average of the error in the transmembrane
potential V,,, at N points int € [to,¢s]. However, in order
to compute an average of the error, either the exact solution
must be known or a reference solution must be computed for
all N points. In this case, a reference solution is a humerical
solution to (2) that is known to have convergeddtaligits of
accuracy inV,, at all N points, whered is sufficiently large
and determined by comparing increasingly accurate saisitio
and counting the number of matching digits for all points.

A error norm commonly used to assess the accuracy of the
numerical solution of a myocardial cell model is the Relativ
Root Mean Square (RRMS) error, defined by

150 (Vini = Vini)?
1 i
N Zi:l V’r%,,l

€RRMS =

)

whereV,,, ; is the numerical solution anﬁm_i is the reference
solution, both at time;. We introduce a new error norm, which
we call the Mixed Root Mean Square (MRMS) error, defined



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING JOURNAL , VOLXX, NO. XX, XX 7

by - =+ Solution at 5% MRMS error
N ~ 2 25+ N - - - Solution at 1% MRMS error
e 1 Vm,i - Vm,i LY = Reference solution
MRMS = ~ E e —— .
N i=1 1+ |Vm,i|

The numerical solutions produced by using the RRMS ar
MRMS error norms at 5% and 1% error are compared for tt
model of McAllister et al. (1975), solved using the RL method%  5f
Figure 3 compares a reference solution to numerical solsitio .= |
computed at 5% and 1% RRMS error for the transmembra
potential. It can be seen that at 5% RRMS error, the action p
tential is early by approximatel{00 ms. At 1% RRMS error, -1or
the agreement is clearly much better. On the scale of Figure  _is-
the numerical solutions produced at 5% and 1% MRMS erri
are in close agreement with the reference solution. Figure
compares a reference solution to solutions computed to & 210 220 230 240 250
and 1% MRMS error for the transmembrane potential fc. Time (ms)
the sub-interval[200, 250]_ ms. It (?an _be seen that at 1%Fig. 4. Close up of reference solution<—) and numerical solutions for
MRMS error, the numerical solution is extremely accurate;, produced by the RL method at MRMS errors of 5%-(—-) and 1%
At 5% MRMS error, the numerical solution perhaps remairfs — -) for the model of McAllister et al. (1975) on the intelrf200, 250].
sufficiently accurate but is eight times faster to compute.

—5F

-20F

20~ tolerances td 012 to compute reference solutions with seven
- =+ Solution at 5% RRMS error i iai _ H
3 oo ot RRMS orror to ten_matchlng d_|g|ts atv. = 100 equally spaced points
20 = Reference solution in the intervals of integration. The MRMS error between the

reference solution and the computed solution was computed
using linear interpolation as necessary. A significant pért
our analysis consisted of determining the maximum constant
step sizes that satisfied a 5% MRMS error tolerance for each
of the models with respect to the reference solutions. This
enabled us to determine the efficiency of a numerical method
as the amount of computation time (i.e., the product of the
number of steps and the computational cost per step) retjuire
to achieve a given accuracy; see, e.g., [9]. Timings refdorte
are the minimum run time out of 100 runs for these step sizes.
Constant step sizes are used to reflect the scenario of thes ODE
being solved within the context of solving the monodomain
0 10 200 300 Tim‘ffms) 50 600 700 80  gr bidomain equation via operator splitting. Timings were

computed in Matlab R2010a on an HP Z400 with an Intel
Fig. 3. Reference solution{—) and numerical solutions fd¥;, produced Xeon W3520 2.66 GHz quad-core processor with 16 GB of
by the RL method at RRMS errors of 5%-~) and 1% (- - -) for the DDR3 RAM running 64-bit Ubuntu 9.04. Hyperthreading and
model of McAllister et al. (1975). . -

turbo-boost were enabled while the timings were computed.
From Table V, we find that the FE method wins on nine

From examination of Figures 3 and 4, we postulate that :
the MRMS error norm at 5% strikes an appropriate balangéOdels’ the RL method wins on 24 models, and the GRL1

for clinical accuracy requirements while taking into acebu method wins on four models. Moreover, the RL method is

computational effort. We do not generally advocate the u ver more than about 50% less efficient than the FE method.
of the RRMS error norm because it is sensitive to the erri%is confirms that the popularity of the RL method in practice

level specified; i.e., disproportionately inaccurate Sohs can IS vye_ll j_ustified. The secrets to it.s success lie mainly in.its
satisfy the RRMS error norm for seemingly reasonable |eve%art|t|on|ng of the ODE system into gating and non-gating

Because it is a norm, it can safely be used at low error IeveY§?lrlables and solving the equations for the gating variable

Similar observations can be made for the RRMS and MR fth an e_xponential_i_ntegrator. The RI.‘ method has the best
error norms for the remaining cell models. Accordingly onl ombination of stability and computational expense pep ste

results for the MRMS error norm at 5% are presented. or moderately stiff models. B(_ecause the maJonty of the 37
cell models are moderately stiff, the RL method is the best

_ ) single method for most models. The GRL1 method is the most
B. Simulation Results efficient for three of the stiffest models, those of Bond&gen
The results from solving the 37 cell models with FE, RLet al. (2004), Pandit et al. (2001), and Pandit et al. (2003).
and GRL1 are listed in Table V. MatlabXsle 15s method [50] The performance of the partitioned method GRLIFEIis
was used with a sequence of decreasing absolute and relatiggermined for five of the stiffest cell models, namely those

(mV)
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TABLE V
STEP SIZE IN MILLISECONDS, AND EXECUTION TIME, IN SECONDS OF THE FOUR NUMERICAL METHODS USING THE LARGEST STEP SIZE WHILESS
THAN 5% MRMSERROR THE SHORTEST EXECUTION TIME HAS BEEN HIGHLIGHTED IN BOLD TEXTFOR EACH MODEL

Model FE RL GRL1
At Time At Time At Time

Beeler—Reuler (1977) 2.53E-2| 3.53E-2| 7.20E-1| 1.40E-3 | 8.08E-1| 3.85E-3
Bondarenko et al. (2004) 2.13E-4| 2.23E+0| 2.13E-4 | 2.28E+0 | 7.47E-3| 8.41E-1
Courtemanche et al. (1998) 1.94E-2| 2.11E-1| 7.97E-2| 5.60E-2 | 9.60E-2 | 3.01E-1
Demir et al. (1994) 5.95e-2 | 1.52E-2 | 5.32E-2| 1.76E-2 | 1.18E-1| 9.03E-2
Demir et al. (1999) 5.96E-2| 1.74E-2 | 4.73E-2| 2.36E-2 | 9.99E-2 | 1.26E-1
DiFrancesco—Noble (1985) 7.73E-2| 8.21E-2| 1.95E-1| 3.40E-2 | 2.07E-1| 3.22E-1
Dokos et al. (1996) 7.02E-2| 2.87E-2| 1.22E-1| 1.64E-2 | 8.02E-2| 2.78E-1
FitzZHugh—-Nagumo (1961) 2.72E-3| 6.02E-3 NA NA 2.60E-3| 1.35E-1
Faber—Rudy (2000) 1.12E-2| 2.05E-1| 2.01E-2| 1.17E-1 | 4.06E-2| 6.28E-1
Fox et al. (2002) 4.62E-3| 2.94E-1| 4.33E-2| 3.31E-2 | 1.16E-1| 8.77E-2
Hilgemann—Noble (1987) 6.25E-2| 1.93E-2| 8.06E-2| 1.51E-2 | 1.52E-1| 9.77E-2
Hund—Rudy (2004) 7.80E-3| 3.11E-1 | 5.33E-3| 4.85E-1 | 5.47E-3| 4.88E+0
Jafri et al. (1998) 5.76E-4| 3.65E+0 | 5.77E-4| 3.59E+0 | 1.41E-3| 1.71E+1
Luo—Rudy (1991) 1.35E-2| 1.33E-1| 1.23E-1| 1.30E-2 | 3.15E-1| 1.01E-2
Maleckar et al. (2008) 5.02E-2| 7.86E-2 | 8.87E-2| 4.60E-2 | 4.20E-1| 1.29E-1
McAllister et al. (1975) 247E-2| 7.35E-2 | 4.69E-1| 4.41E-3| 2.53E-1| 2.38E-2
Noble (1962) 2.02E-1| 2.83E-3 | 1.47E-1| 3.69E-3 | 1.10E-1| 1.77E-2
Noble—Noble (1984) 2.04E-1| 5.65E-3 | 1.21E-1| 9.57E-3 | 9.27E-2| 1.21E-1
Noble et al. (1991) 5.15E-2| 2.15E-2 | 1.53E-1| 7.46E-3 | 1.04E-1| 1.17E-1
Noble et al. (1998) 5.56E-2| 5.37E-2 | 1.57E-1| 1.96E-2 | 8.86E-2| 3.47E-1
Nygren et al. (1998) 5.36E-2| 9.44E-2 | 8.88E-2| 5.88E-2 | 2.06E-1| 2.77E-1
Pandit et al. (2001) 291E-4| 4.94E+0| 2.91E-4 | 5.13E+0 | 2.40E-2| 6.02E-1
Pandit et al. (2003) 2.65E-5| 5.55E+1 | 2.65E-5| 5.68E+1 | 1.57E-2| 9.67E-1
Puglisi-Bers (2001) 5.97E-3| 1.39E+0 | 1.45E-2| 7.81E-1 | 3.23E-2| 1.04E+0
Sakmann et al. (2000) — Endo 6.90E-2 | 5.12E-2 | 4.99E-2 | 6.94E-2 | 4.16E-2| 8.87E-1
Sakmann et al. (2000) — Epi 6.90E-2 | 5.24E-2 | 4.16E-2| 8.32E-2 | 3.83E-2| 9.67E-1
Sakmann et al. (2000) — M-cell 6.86E-2 | 5.26E-2 | 2.32E-1| 1.51E-2 | 4.21E-1| 8.80E-2
Stewart et al. (2009) 1.52E+1 | 4.42E-1| 2.05E+2 | 3.48E-2 | 1.74E+2 | 3.78E-1
Ten Tusscher et al. (2004) -Endd 1.78E-3 | 1.77E+0| 1.24E-1| 2.65E-2 | 1.37E-1| 2.18E-1
Ten Tusscher et al. (2006) -Endd 1.62E-3 | 1.29E+0| 7.03E-2| 3.10E-2| 1.29E-1| 1.67E-1
Ten Tusscher et al. (2004) -Epi | 1.78E-3 | 1.79E+0 | 1.12E-1| 2.97E-2 | 1.19E-1| 2.51E-1
Ten Tusscher et al. (2006) -Epi | 2.14E-3 | 9.86E-1| 1.16E-1| 1.90E-2 | 1.75E-1| 1.23E-1
Ten Tusscher et al. (2004) -M-ce|l 1.76E-3 | 1.33E+0 | 1.21E-1| 2.03E-2| 1.02E-1| 2.23E-1
Ten Tusscher et al. (2006) —M-ce|l 2.06E-3 | 1.01E+0 | 1.27E-1| 1.72E-2 | 1.38E-1| 1.54E-1
Wang-Sobie (2008) 1.66E-2| 6.21E-2 | 5.27E-2| 1.90E-2 | 9.36E-2| 1.20E-1
Winslow31 1.07E-4| 1.41E+1| 1.07E-4| 1.49E+1 | 9.38E-5| 2.15E+2
Zhang et al. (2000) 9.97E-2| 5.14E-2 | 457E-1| 1.16E-2 | 3.04E-1| 1.12E-1

of Bondarenko et al. (2004), Jafri et al. (1998), Pandit et dbws. In the stiff regions, the GRL1/FEE method can gen-
(2003), Ten Tusscher et al. (2006), and Winslow31, accgrdierally take larger step sizes than the RL method applied
to the partitions reported in Table IV, and the results ate the entire region because the partitioning of the ODEs
reported in Table VI. For GRL1/HEE, At, s andAt, are the better captures the stiffness for treatment by the expdadent
step sizes used in the non-stiff and stiff regions, respelgti  integrator than partitioning along the lines of gating venn
From Table VI, we see that GRLL/FEE is the most gating variables. Moreover because the use of GRL1 is lanite

efficient method for all five of the stiff models consideredt.O the relatively small number of stiff ODEs, it is also

For the two stiffest models, namely that of Pandit et al. @Oocomputationally cheaper per step than _RL'_ In the non-stiff
and Winslow31, GRL1/FFEFE is almost; and3 times faster, regions, GRL1/FEFE reduces to FE, which is the cheapest

respectively, than its next closest competitor. For thesdats, Method per step out of those considered. The GRLIFEE
RL is not the most efficient basic method; GRL1JFE is method can also generally take larger steps on these regions

about 270 and 3 times faster than RL in these cases. FgPan the go_rresp(_)nding steps for F.E gpplied o the eptiriemeg
the slightly less stiff models of Bondarenko et al. (2004 arpecause it |s_not |mpqcted by restrictions from the stifforg.
Jafri et al. (1998), GRLL/FEE is abou® and5 times faster Based on this analysis we also expect that a method based on

than its next closest competitor, respectively. We note &L Rartitioning the time interval into stiff and non-stiff regs

the most efficient basic method for the model of Jafri et af"d @PPlying RL and FE respectively to these regions would
(1998). Finally for the Endocardial variant of the model eqt ©utPerform RL (see [4] and [S]) but not GRL1/FEE.

Tusscher et al. (2006) that only has a single stiff variathie,
gating variablem, GRL1/FEFE is 12% faster than its next
closest competitor, RL.

When solving the monodomain or bidomain model in
practice, other devices, such as table lookups of activatio
and inactivation variables and switching to larger timegpste
These improvements can generally be understood as faken all model points are depolarized, are often used taceedu
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TABLE VI

STEP SIZE IN MILLISECONDS, AND EXECUTION TIME, IN SECONDS OF THE BASIC METHODS(FE, RL, GRL1)AND THE PARTITIONED METHOD GRL1/FEFE USING THE
LARGEST STEP SIZES THAT GIVES LESS THA%% MRMS ERROR FOR FIVE OF THE STIFFEST CELL MODELSTHE SHORTEST EXECUTION TIME HAS BEEN HIGHLIGHTED IN
BOLD TEXT FOR EACH MODEL FOR GRL1/FEFE, At,, s IS THE STEP SIZE USED BY THEFE METHOD IN THE NON-STIFF REGION AND At IS THE STIFF STEP SIZE USED BY

THE GRL1/FEMETHOD IN THE STIFF REGION

Model FE RL GRL1 GRL1/FHFE
At Time At Time At Time Aty s Aty Time
Bondarenko et al. (2004) 2.13E-4 2.23E+0| 2.13E-4 2.28E+0| 7.47E-3 8.41E-1| 3.02E-2 7.59E-3 9.59E-2
Jafri et al. (1998) 5.76E-4  3.65E+0| 5.77E-4  3.59E+0| 1.41E-3 1.71E+1| 5.29E-3 2.29E-3 6.84E-1
Pandit et al. (2003) 2.65E-5 5.55E+1| 2.65E-5 5.68E+1| 1.57E-2 9.67E-1| 1.99E-2 6.59E-3 2.10E-1
Ten Tusscher et al. (2006) —Endp 1.62E-3  1.29E+0{ 7.03E-2  3.10E-2| 1.29E-1 1.67E-1| 1.08e-1 1.00E-1 2.55E-2
Winslow31 1.07E-4  1.41E+1| 1.07E-4  1.49E+1| 9.38E-5 2.15E+2| 5.00E-3 7.70E-5 4.85E+0
computation times [51]. The use of such devices would not be REFERENCES
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