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The secrets to the success of the Rush–Larsen
method and its generalizations

Megan E. Marsh, Saeed Torabi Ziaratgahi, Raymond J. Spiteri

Abstract—One of the most popular methods for solving the
ordinary differential equations (ODEs) that describe the dynamic
behaviour of myocardial cell models is known as the Rush–
Larsen (RL) method. Its popularity stems from its improved
stability over integrators such as the forward Euler (FE) method
along with its easy implementation. The RL method partitions
the ODEs into two sets: one for the gating variables, which
are treated by an exponential integrator, and another for the
remaining equations, which are treated by the FE method.
The success of the RL method can be understood in terms of
its relatively good stability when treating the gating variables.
However, this feature would not be expected to be of benefit
on cell models for which the stiffness is not captured by the
gating equations. We demonstrate that this is indeed the case
on a number of stiff cell models. We further propose a new
partitioned method based on the combination of a first-order
generalization of the RL method with the FE method. This new
method leads to simulations of stiff cell models that are often one
or two orders of magnitude faster than the original RL method.

Index Terms—partitioned methods; efficient numerical meth-
ods; simulation of electrophysiological models; Rush–Larsen
method; exponential integrator; ordinary differential eq uations;
stiffness.

I. I NTRODUCTION

According to the World Health Organization, ischaemic
heart disease was the single leading cause of death overall
in its member countries in 2008 [1]. Many heart problems can
be linked to abnormalities in the electrical activity in theheart.

The electrophysiological behaviour of the heart can be math-
ematically modelled by differential equations. In particular, the
electrical activity and ionic currents of a single heart cell can
be described by a system of ordinary differential equations
(ODEs). These ODEs are coupled with a system of partial
differential equations (PDEs) in order to model the propagation
of the electrical activity throughout the entire heart via the
monodomain or bidomain equation [2].

A common way to solve the monodomain or bidomain
equation is via operator splitting, an algorithm that generally
splits a system of differential equations into a number of
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subsystems and solves each separately. In particular, when
solving the monodomain or bidomain equation numerically,
a system of ODEs for the averaged electrical activity of a
number of myocardial cells must be solved at each node of
the discretized spatial domain. Accordingly, the efficiency of
the numerical method used for solving the ODEs for cell
models plays an important role in solving the monodomain
or bidomain equation efficiently.

In this study we consider the numerical solution of 37 veri-
fied myocardial cell models from the CellML model repository
[3]; see also [4] and [5]. The range of cell models encompasses
widely varying degrees of stiffness that can be characterized
by analyzing the eigenvalues of the Jacobian matrix [4]. The
level of stiffness of a particular model determines whethera
numerical method can solve the model efficiently.

One of the most popular methods for solving the ODEs that
describe the dynamic behaviour of myocardial cell models is
known as the Rush–Larsen (RL) method [6]. Its popularity
stems from its improved stability properties over integrators
such as the forward Euler (FE) method coupled with its easy
implementation. There have been recent attempts to build
on the success of RL [7], [8]. In particular, a generalized
RL method of second order, which we denote by GRL2,
was proposed in [7], where it was shown to outperform
RL on three cell models. A generalized RL method of first
order, which we denote by GRL1, was also described but not
investigated. GRL2 only outperformed the explicit mid-point
rule, a standard second-order explicit Runge–Kutta method, on
the single stiff cell model used in the study. This qualitative
characterization of performance of GRL2 relative to RL and
FE is confirmed in [4] (see also [5]) on 37 cell models; i.e., RL
is the most efficient method on the majority of cell models,
with GRL2 being most successful on the stiffest ones. This
also leads to the observation that most cell models are only
moderately stiff, lending a way to understand the success of
RL as an efficient general-purpose method.

The RL method is apartitioned method [9] for solving
ODEs. It partitions the ODEs into two sets: one for the gating
variables, which are treated by an exponential integrator,and
another for the remaining equations, which are treated by the
FE method.

The earliest publications on exponential integration date
back as far as [10] and [11]. Besides cardiac electrophysiology,
exponential integration is also popular in neural simulations,
e.g., [12], [13], mainly in the context of linear, constant-
coefficient ODEs. With the advent of efficient algorithms for
evaluating products of matrix exponentials with vectors, there
has been a relatively recent resurgence in interest in exponen-
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tial integration in other applications, in particular problems
where the eigenvalues of the Jacobian of the solution have
large negative real parts (such as for spatial discretizations of
parabolic problems) or are large and purely imaginary (suchas
in highly oscillatory problems); e.g., see [14] for an in-depth
survey. The exponential method used as part of the RL method
corresponds to the exponential Euler method [14] with the
Jacobian matrix approximated by its diagonal. Interestingly,
this appears to be the sense in which exponential integration
was proposed in [11]; however it falls short of the modern
definition of the method.

The success of the RL method can be understood in terms
of the relatively good stability provided by the exponential part
of the integration when treating the gating variables. However,
this approach may not be expected to work well on cell models
for which the stiffness is not captured by the gating equations.

In this study we focus on the performance of three basic
numerical methods, FE, RL, and GRL1. All of these methods
are first order. The order of a method has an effect on the
amount of computation required for the method to reach a
given level of accuracy. However, for the purposes of this
study, we wish to remove any potentially confounding issues
of order and focus only on issues of stability and stiffness.
By analyzing the eigenvalues of the Jacobian matrix of the
stiff cell models, we find that only a few of the equations
are responsible for the stiffness, and in many cases, these
equations are not associated with gating variables. In addition,
the ODEs classified as stiff are in fact not stiff on the entire
interval of integration. Using this information, we construct
a partitioned method combining GRL1 with FE that handily
outperforms the three basic methods on five stiff models.

The remainder of this paper is organized as follows. In
Section II, we give a mathematical description of myocardial
cell models and briefly discuss stiffness for ODEs. In Section
III, we review the three numerical methods considered and
introduce the partitioned method GRL1/FE|FE that combines
GRL1 with FE. In Section IV, we present the numerical
experiments and assess the performance of each method for
solving cell models. In order to do this, we introduce a new
error norm to assess the accuracy of numerical solutions of cell
models. Finally, in Section V, we summarize our conclusions.

II. M YOCARDIAL CELL MODELS

A wide range of models has been developed to describe
the electrical currents in various single heart cells, e.g., atrial
cells, ventricular cells, human cells, rat cells, etc. Mostcan be
formulated as an initial-value problem (IVP) for a system of
ODEs of the form

dy

dt
= f(t,y), y(t0) = y0. (1)

The component variables of the vectory are dependent on
the cell model but they typically include the transmembrane
potential, a number of gating variables, and a set of ionic con-
centrations. Many important cell models are derived from the
Hodgkin–Huxley model of a squid giant axon, first proposed
in 1952 [15]. This type of model can be written as

dVm

dt
= −

1

Cm

nion
∑

i=1

Ii(Vm,m, c, t), (2a)

dcj
dt

= gj(cj ,m, Vm, t), j = 1, 2, ..., nc, (2b)

dmk

dt
= αk(1−mk)− βkmk, k = 1, 2, ..., nm. (2c)

Equation (2a) describes the evolution of the transmembrane
potential Vm, where Ii is the total transmembrane current
carried by ioni of nion ions andCm is the capacitance of
the cell membrane per unit area. Equation (2b) describes the
dynamic variations innc intracellular ionic concentrations.
Equation (2c) describes the opening and closing ofnm ion
channels in the cell membrane expressed by the gating variable
vector m with componentsmk, whereαk = αk(Vm) and
βk = βk(Vm). The ODEs given by (2a) and (2b) are generally
nonlinear; however,αk and βk in (2c) are only nonlinear
functions ofVm.

In this study we consider 37 verified myocardial cell models
from the CellML model repository [3]; see also [4] and [5].
Table I contains the name of each model, the reference to
the original paper, the total number of variables, the number
of gating variables, and a brief description of the model. We
note that the model of Winslow et al. (1999) used in this
study has 31 variables, representing a reduced form of the
original model, and is subsequently referred to as Winslow31.
In Winslow31, the intracellular sodium concentration and one
of the calcium handling mechanisms from the original model
are taken as constants [16].

An important consideration in the efficient numerical solu-
tion of differential equations is the concept ofstiffness. Despite
its pervasiveness in practice, there is no universally accepted
theoretical definition of stiffness. In this study, an IVP (1)
is considered to be stiff on a time interval with respect to
a given numerical method and error tolerance when stability
requirements force the numerical method to take smaller
step sizes than those dictated by accuracy requirements [49].
Generally, step sizes required for a non-stiff method applied
to a stiff model are much smaller than accuracy requirements
dictate, resulting in a numerical solution that is much more
accurate (and hence more costly to compute) than desired. In
order to reduce computational effort, it is preferred that step
sizes be chosen based only on accuracy requirements.

The cell models considered in this paper range from non-
stiff to moderately stiff to stiff for typical accuracy require-
ments. The level of stiffness of a particular model determines
whether a given numerical method can solve the model effi-
ciently. The characterization of stiffness in each cell model
is therefore important in order to choose the appropriate
numerical method to efficiently solve that particular modelto a
given accuracy. Given the wide range of cell models and their
associated levels of stiffness, it is not surprising that nosingle
numerical method is the most effective on all the models.

Related to the stiffness of an IVP (1) are the eigenvalues of
the Jacobian matrix,J = ∂f

∂y
(t ,y), evaluated over time. The

magnitude and nature of these eigenvalues (i.e., whether they
are real, imaginary, or complex) can provide information as
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TABLE I
SUMMARY OF THE 37 MYOCARDIAL CELL MODELS STUDIED. THREE TYPES OF MYOCARDIAL CELL MODEL VARIANTS(ENDOCARDIAL CELL,

EPICARDIAL CELL, AND M-CELL) EXIST FOR EACH OF THE MODELS MARKED WITH AN ASTERISK.

Model Reference Number of Number of Description
variables gating variables

Beeler–Reuter (1977) [17] 8 6 Mammalian ventricle
Bondarenko et al. (2004) [18] 41 8 Mouse ventricle
Courtemanche et al. (1998) [19] 21 15 Human atrium
Demir et al. (1994) [20] 27 10 Rabbit sinoatrial node
Demir et al. (1999) [21] 29 11 Rabbit sinoatrial node
DiFrancesco–Noble (1985) [22] 16 9 Mammal Purkinje fibre
Dokos et al. (1996) [23] 18 8 Rabbit sinoatrial node
Faber–Rudy (2000) [24] 19 12 Guinea pig ventricle
FitzHugh–Nagumo (1961) [25], [26] 2 0 Nerve membrane
Fox et al. (2002) [27] 13 10 Canine ventricle
Hilgemann–Noble (1987) [28] 15 3 Rabbit atrium
Hund–Rudy (2004) [29] 29 20 Canine ventricle
Jafri et al. (1998) [30] 31 5 Guinea pig ventricle
Luo–Rudy (1991) [31] 8 6 Guinea pig ventricle
Maleckar et al. (2008) [32] 30 12 Human atrium
McAllister et al. (1975) [33] 10 9 Canine Purkinje fibre
Noble (1962) [34] 4 3 Mammal Purkinje fibre
Noble–Noble (1984) [35] 15 8 Rabbit sinoatrial node
Noble et al. (1991) [36] 17 6 Guinea pig ventricle
Noble et al. (1998) [37] 22 8 Guinea pig ventricle
Nygren et al. (1998) [38] 29 12 Human atrium
Pandit et al. (2001) [39] 26 12 Rat left-ventricle
Pandit et al. (2003) [40] 26 13 Rat left-ventricle
Puglisi–Bers (2001) [41] 17 11 Rabbit ventricle
Sakmann et al. (2000)* [42] 21 6 Guinea pig ventricle
Stewart et al. (2009) [43] 20 13 Human Purkinje fibre
Ten Tusscher et al. (2004)* [44] 17 10 Human ventricle
Ten Tusscher et al. (2006)* [45] 19 12 Human ventricle
Wang–Sobie (2008) [46] 35 11 Neonatal mouse ventricle
Winslow31 [47] 31 8 Canine ventricle
Zhang et al. (2000) [48] 15 14 Rabbit sinoatrial node

to the degree of stiffness present in an IVP at a given time.
A stiff IVP typically has eigenvaluesλ with large negative
real parts on some time interval. Such eigenvalues force the
time step∆t to be small so thatλ∆t is within the stability
region of the numerical method. IVPs that have eigenvalues
with large imaginary parts also tend to be difficult to solve by
standard solvers; however they are not normally consideredto
be stiff according to the classical treatment of stiffness.

The extreme values for the real and imaginary components
of the eigenvalues for the 37 cell models studied are reported
in Table II along with the percentage of time when a complex
eigenvalue pair was present. For the typical accuracies with
which we are concerned in this study, the models with small
negative real eigenvalues, such as the FitzHugh–Nagumo
model, are considered to be non-stiff. Similarly, the models
with large negative real eigenvalues, such as the model of
Pandit et al. (2003) and Winslow31, are considered to be stiff.

III. N UMERICAL METHODS

The solutions to myocardial cell models must generally be
obtained through the use of numerical methods. One common
numerical method used to solve an IVP (1) is the forward Euler
(FE) method. The FE method is a first-order explicit method
that is widely used because of its ease of implementation.
However, the FE method is often severely limited by stability
constraints when problems are stiff.

We focus on the performance of three basic methods: FE,
RL, and GRL1. Their formulation is presented in detail and
they are assessed in terms of their efficiency in solving the
37 cell models listed in Table I. The FE and GRL1 methods
are subsequently combined into a partitioned method that is
more computationally efficient than the RL method for stiff
cell models.

A. Basic methods

Given the IVP
dy

dt
= f(t ,y), y(tn) = yn, (3)

for tn < t < tn+1, wherey ∈ R
M , f : R× R

M → R
M , and

∆tn = tn+1 − tn, the FE method approximates (3) by

yn+1 = yn +∆tn f(tn,yn). (4)

The RL method applies the FE method to the ODEs for non-
gating variables present in (3) but uses a different technique
for the ODEs satisfied by gating variables. These ODEs have
the form (2c) that, for a typical gating variabley, can be
reformulated as

dy

dt
=

y∞ − y

τy
, (5)

where
y∞ =

αy

αy + βy

, τy =
1

αy + βy

,
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TABLE II
EXTREME VALUES OF THE EIGENVALUES OF THEJACOBIAN FOR EACH CELL MODEL. THE MINIMUM REAL PART OF THE SET OF EIGENVALUES IS

DENOTEDmin(Re(λ)) AND THE MAXIMUM REAL PART OF THE SET OF EIGENVALUES IS DENOTEDmax(Re(λ)). SIMILARLY , THE MINIMUM AND
MAXIMUM IMAGINARY PARTS ARE DENOTED min(Im(λ)) AND max(Im(λ)). THE PERCENTAGE OF THE SOLUTION INTERVAL IN WHICH THERE IS AT

LEAST ONE PAIR OF COMPLEX EIGENVALUES IS ALSO REPORTED.

Model min(Re(λ)) max(Re(λ)) min(Im(λ)) max(Im(λ)) % Complex
Beeler–Reuter (1977) –8.20E+1 1.55E–2 –1.97E+0 1.97E+0 45
Bondarenko et al. (2004) –8.49E+3 4.51E+0 –2.80E+0 2.80E+0 53
Courtemanche et al. (1998) –1.29E+2 1.87E–1 –4.50E+0 4.50E+0 82
Demir et al. (1994) –3.80E+1 4.79E–1 –7.95E–2 7.95E–2 74
Demir et al. (1999) –3.82E+1 4.81E–1 –7.95E–2 7.95E–2 72
DiFrancesco–Noble (1985) –2.63E+1 1.88E+0 –6.14E–1 6.14E–1 56
Dokos et al. (1996) –2.99E+1 5.06E–1 –1.19E–1 1.19E–1 97
Faber–Rudy (2000) –1.84E+2 1.37E–2 –5.61E–1 5.61E–1 58
FitzHugh–Nagumo (1961) –4.39E–1 1.78E–1 –4.59E–2 4.59E–2 28
Fox et al. (2002) –4.39E+2 4.44E–2 –4.19E–1 4.19E–1 65
Hilgemann–Noble (1987) –3.25E+1 1.58E–1 –2.25E–1 2.25E–1 25
Hund–Rudy (2004) –1.95E+2 9.22E–1 –3.74E+0 3.74E+0 62
Jafri et al. (1998) –4.42E+3 4.82E+0 –2.35E–1 2.35E–1 47
Luo–Rudy (1991) –1.51E+2 7.01E–2 –4.11E–2 4.11E–2 73
Maleckar et al. (2008) –4.16E+1 2.42E–1 –3.43E–1 3.43E–1 28
McAllister et al. (1975) –1.83E+2 1.49E+0 –3.02E+0 3.02E+0 68
Noble (1962) –9.80E+0 1.74E+0 –1.28E–1 1.28E–1 24
Noble–Noble (1984) –1.25E+1 4.77E–1 –1.03E–1 1.03E–1 92
Noble et al. (1991) –3.89E+1 4.35E+0 –1.72E–1 1.72E–1 20
Noble et al. (1998) –3.60E+1 5.71E+0 –2.35E–1 2.35E–1 47
Nygren et al. (1998) –4.03E+1 2.05E+0 –3.88E–1 3.88E–1 24
Pandit et al. (2001) –6.92E+3 4.30E+0 –1.43E+0 1.43E+0 12
Pandit et al. (2003) –7.54E+4 3.87E+0 –9.11E–1 9.11E–1 35
Puglisi–Bers (2001) –1.91E+2 2.22E+0 –1.07E–1 1.07E–1 41
Sakmann et al. (2000) – Endo –2.97E+1 7.21E–1 –7.48E–2 7.48E–2 84
Sakmann et al. (2000) – Epi –2.96E+1 6.98E–1 –7.47E–2 7.47E–2 75
Sakmann et al. (2000) – M-cell –2.98E+1 1.98E+0 –7.58E–2 7.58E–2 72
Stewart et al. (2009) –1.38E–1 3.34E–3 –1.57E–3 1.57E–3 92
Ten Tusscher et al. (2004) – Endo –1.17E+3 1.01E–1 –4.64E+0 4.64E+0 17
Ten Tusscher et al. (2004) – Epi –1.17E+3 9.74E–2 –4.70E+0 4.70E+0 18
Ten Tusscher et al. (2004) – M-cell –1.17E+3 9.75E–2 –4.70E+0 4.70E+0 21
Ten Tusscher et al. (2006) – Endo –1.26E+3 4.00E+0 –4.77E+0 –4.77E+0 50
Ten Tusscher et al. (2006) – Epi –9.44E+2 2.84E+0 –5.01E+0 5.01E+0 51
Ten Tusscher et al. (2006) – M-cell –9.81E+2 4.36E+0 –4.64E+0 4.64E+0 34
Wang–Sobie (2008) –1.23E+2 1.23E+0 –1.24E+0 1.24E+0 46
Winslow31 –1.84E+4 1.53E+0 –4.22E–1 4.22E–1 63
Zhang et al. (2000) –2.22E+1 1.29E–1 –1.00E–1 1.00E–1 89

and whereαy = αy(Vm) andβy = βy(Vm). The RL method
assumes the transmembrane potentialVm is constant over each
step, allowing (5) to be treated as a linear ODE with an exact
solution given by

yn = y∞ + (yn−1 − y∞)e
−∆tn

τy . (6)

The GRL1 method decouples and linearizes the ODE sys-
tem around a pointy = yn at time t = tn to obtain

dyi
dt

= fi(yn) +
∂

∂yi
fi(yn) (yi − yn,i) , yi(tn) = yn,i, (7)

for i = 1, 2, . . . ,M , where the subscripti denotes component
i of a vector. The exact solution of (7) is given by

yi(t) = yn,i +
a

b

(

eb(t−tn) − 1
)

, i = 1, 2, . . . ,M, (8)

where a = fi(yn) and b = ∂fi(yn)/∂yi. The numerical
solutionyn+1 at time t = tn+1 is obtained by

yn+1,i = yn,i +
a

b

(

eb(∆tn) − 1
)

, i = 1, 2, . . . ,M. (9)

In practice, if |∂fi(y)/∂yi| < δ, whereδ = 10−8 for double-
precision calculations, the limit as∂fi(y)/∂yi → 0 is used

instead of (8) to get

yi(t) = yn,i + a(t− tn), i = 1, 2, . . . ,M.

The numerical solution, which is also exact when
∂fi(y)/∂yi = 0, is then obtained by

yn+1,i = yn,i + a∆tn, i = 1, 2, . . . ,M.

In order to use the GRL1 method, the diagonal of the
Jacobian matrix∂f/∂y is required. Numerical Jacobians are
used throughout, with a special implementation in practice
because only the diagonal elements are required. This reduces
computational cost because unnecessary components of the
Jacobian matrix are not computed. The finite-difference ap-
proximation of∂fi(y)/∂yi is obtained by

∂fi(y)/∂yi ≈
fi(y1, . . . , yi−1, yi +∆, yi+1, . . . , yM )− fi(y)

∆
,

where∆ = 10−8 for double-precision calculations.
The RL and GRL1 methods treat the gating equations (2c)

similarly. In other words, ifyi is a gating variable then (9)
reduces to (6). The key difference between the methods is
in their treatment of the non-gating variables: GRL1 applies
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an exponential integrator based on local linearization to non-
gating variables whereas RL uses the FE method.

A summary of the three basic numerical methods used for
this study is presented in Table III. We note that the method
that is the least stable but computationally cheapest per step
is the FE method and the method that is the most stable but
computationally costliest per step is the GRL1 method. This
tradeoff of stability for computational cost per step is typical
for numerical methods to solve stiff IVPs. It is often the case
that the increase in stable step size more than offsets increase
in computational cost per step, leading to a less expensive
computation (i.e., more efficient method) overall.

B. Partitioned methods

By analyzing the eigenvalues of the Jacobian matrix of stiff
cell models, it can be determined that only a few of the ODEs
are responsible for the stiffness of the model. This provides
a means by which the system of ODEs can be partitioned
into stiff and non-stiff subsystems. This eigenvalue analysis
also reveals on which sub-interval(s) of the entire interval of
integration the IVP is stiff. This permits a partitioning ofthe
interval of integration into stiff and non-stiff subintervals.

As examples, we consider the stiff cell models of Pandit
et al. (2003) and Winslow31. The plots of the real parts of
the eigenvalues of the Jacobian matrix of these two models
are given in Figures 1 and 2. The negative eigenvalues and
their corresponding ODEs are labelled in the figures. The
plots also show that the ODEs that capture the stiffness of
the system are not stiff on the entire interval of integration.
From close examination of the eigenvalues, we find that only
two out of 26 ODEs from the model of Pandit et al. (2003)
(Figure 1(b)) and only two out of 31 ODEs from Winslow31
(Figure 2(b)) are responsible for the stiffness of the models.
We also identify that the stiffness is approximately contained
within the subintervals[105, 195] and [0, 40] for the model of
Pandit et al. (2003) and Winslow31, respectively.

Table IV summarizes the relevant attributes of five of the
stiffest models, namely those of Bondarenko et al. (2004), Jafri
et al. (1998), Pandit et al. (2003), the Endocardial variantof
Ten Tusscher et al. (2004), and Winslow31. The models of
Pandit et al. (2001) and the Epicardial and M-cell variants of
the model of Ten Tusscher et al. (2004, 2006) are excluded to
maximize diversity. The table reports the number of variables
in each model, the number of equations in the stiff subsystem,
the names of the stiff ODE variables, and the stiff and non-
stiff subintervals. The notation for the stiff ODE variables has
been unified for the purposes of presentation.

An important point to note from Table IV is that the majority
of stiff variables identified are not gating variables. Thismeans
that most of the stiffness of these models is not captured by
gating variables. The exception of note is the model of Ten
Tusscher et al. (2004), which from Table II is shown to be the
least stiff of the five models considered.

We expect that the RL method is best suited for the
integration of stiff models for which the stiffness is captured
by the gating variables, e.g., in the model of Ten Tusscher et
al. (2004), where the only stiff variable is the gating variable
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(a) Real parts of eigenvalues of Jacobian over entire time interval.
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(b) Close up of real parts of eigenvalues of Jacobian over entire time interval.

Fig. 1. Real parts of eigenvalues of Jacobian over time for the model of
Pandit et al. (2003); stiff variablesPC1 (—-) andPO1 ( · – · –) are highlighted.

m. In the case of stiff models for which the stiffness is
not captured by gating variables, we expect the RL method
to perform less well because its step size can be adversely
impacted by stability restrictions imposed by the FE method
being applied to stiff non-gating equations. For such models,
we expect a method such as GRL1 that treats stiff non-gating
equations with an exponential integration method to outper-
form the RL method. Furthermore we expect a combination
of the GRL1 method and the FE method that takes advantage
of partitioning the ODE system and time interval into stiff and
non-stiff subsets to perform even more effectively. Specifically
we propose to use the FE method for the entire ODE system on
the non-stiff portion of the time domain and the GRL1 method
for the stiff variables combined with the FE method for the
non-stiff variables on the stiff subinterval of integration. We
refer to this new partitioned method as GRL1/FE|FE.



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING JOURNAL , VOL.XX, NO. XX, XX 6

TABLE III
SUMMARY OF BASIC NUMERICAL METHODS

Method Gating variables Non-gating variables
(gating equations) (non-linear equations)

FE FE integrator (4) FE integrator (4)

RL Exponential integrator (9) FE integrator (4)

GRL1 Exponential integrator (9)
Local linearization (7) +
Exponential integrator (9)

TABLE IV
STIFF MODELS AND THEIR ATTRIBUTES.

Model Size No. of stiff ODEs Stiff ODE variables Stiff subinterval Non-stiff subinterval
Bondarenko et al. (2004) 41 2 PO1, [Ca2+]ss [20, 75] [0, 20]

Jafri et al. (1998) 31 4 PC1, [Ca2+]ss, CCa0, CCa1 [0, 50] [50, 300]
Pandit et al. (2003) 26 2 PO1,PC1 [105, 195] [0, 105] ∪ [195, 250]
Ten Tusscher et al. (2004) – Endo 19 1 m [0, 12] ∪ [290, 400] [12, 290]

Winslow31 31 2 PC1, [Ca2+]ss [0, 40] [40, 300]
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(a) Real parts of eigenvalues of Jacobian over entire time interval.
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(b) Close up of real parts of eigenvalues of Jacobian over entire time interval.

Fig. 2. Real parts of eigenvalues of Jacobian of the model Winslow31; stiff
variablesPC1 (—-) and [Ca2+]ss ( · – · –) are highlighted.

IV. N UMERICAL EXPERIMENTS

In this section, we begin by introducing an error norm that
is used to quantify the accuracy of a numerical solution of a
cell model. We assess its performance in terms of reliability
compared to another commonly used error norm. We then
assess the performance of the three basic numerical methods
FE, RL, and GRL1 on the 37 cell models listed in Table I. In
the spirit of work-precision analysis, e.g., [9], the performance
of a method is measured in relation to the least amount of CPU
time required to achieve a specified error tolerance. Finally we
assess the performance of the proposed GRL1/FE|FE method
on the five stiffest cell models from Table I.

A. Mixed Root-Mean-Square Error Norm

In order to evaluate the accuracy and efficiency of numerical
methods for solving a myocardial cell model (2) over the
interval t ∈ [t0, tf ], it is necessary to have a measure of
the accuracy of the numerical solution. This is normally done
by computing an average of the error in the transmembrane
potentialVm at N points in t ∈ [t0, tf ]. However, in order
to compute an average of the error, either the exact solution
must be known or a reference solution must be computed for
all N points. In this case, a reference solution is a numerical
solution to (2) that is known to have converged tod digits of
accuracy inVm at all N points, whered is sufficiently large
and determined by comparing increasingly accurate solutions
and counting the number of matching digits for allN points.

A error norm commonly used to assess the accuracy of the
numerical solution of a myocardial cell model is the Relative
Root Mean Square (RRMS) error, defined by

eRRMS =

√

√

√

√

1

N

∑N

i=1(V̂m,i − Vm,i)2
∑N

i=1 V̂
2
m,i

,

whereVm,i is the numerical solution and̂Vm,i is the reference
solution, both at timeti. We introduce a new error norm, which
we call the Mixed Root Mean Square (MRMS) error, defined
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by

eMRMS =

√

√

√

√

1

N

N
∑

i=1

(

V̂m,i − Vm,i

1 + |V̂m,i|

)2

.

The numerical solutions produced by using the RRMS and
MRMS error norms at 5% and 1% error are compared for the
model of McAllister et al. (1975), solved using the RL method.
Figure 3 compares a reference solution to numerical solutions
computed at 5% and 1% RRMS error for the transmembrane
potential. It can be seen that at 5% RRMS error, the action po-
tential is early by approximately100 ms. At 1% RRMS error,
the agreement is clearly much better. On the scale of Figure 3,
the numerical solutions produced at 5% and 1% MRMS error
are in close agreement with the reference solution. Figure 4
compares a reference solution to solutions computed to 5%
and 1% MRMS error for the transmembrane potential for
the sub-interval[200, 250] ms. It can be seen that at 1%
MRMS error, the numerical solution is extremely accurate.
At 5% MRMS error, the numerical solution perhaps remains
sufficiently accurate but is eight times faster to compute.
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Solution at 5% RRMS error
Solution at 1% RRMS error
Reference solution

Fig. 3. Reference solution (——) and numerical solutions forVm produced
by the RL method at RRMS errors of 5% (· – · – · ) and 1% (– – –) for the
model of McAllister et al. (1975).

From examination of Figures 3 and 4, we postulate that
the MRMS error norm at 5% strikes an appropriate balance
for clinical accuracy requirements while taking into account
computational effort. We do not generally advocate the use
of the RRMS error norm because it is sensitive to the error
level specified; i.e., disproportionately inaccurate solutions can
satisfy the RRMS error norm for seemingly reasonable levels.
Because it is a norm, it can safely be used at low error levels.
Similar observations can be made for the RRMS and MRMS
error norms for the remaining cell models. Accordingly only
results for the MRMS error norm at 5% are presented.

B. Simulation Results

The results from solving the 37 cell models with FE, RL,
and GRL1 are listed in Table V. Matlab’sode15s method [50]
was used with a sequence of decreasing absolute and relative
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Fig. 4. Close up of reference solution (——) and numerical solutions for
Vm produced by the RL method at MRMS errors of 5% (· – · – · ) and 1%
(– – –) for the model of McAllister et al. (1975) on the interval [200, 250].

tolerances to10−12 to compute reference solutions with seven
to ten matching digits atN = 100 equally spaced points
in the intervals of integration. The MRMS error between the
reference solution and the computed solution was computed
using linear interpolation as necessary. A significant partof
our analysis consisted of determining the maximum constant
step sizes that satisfied a 5% MRMS error tolerance for each
of the models with respect to the reference solutions. This
enabled us to determine the efficiency of a numerical method
as the amount of computation time (i.e., the product of the
number of steps and the computational cost per step) required
to achieve a given accuracy; see, e.g., [9]. Timings reported
are the minimum run time out of 100 runs for these step sizes.
Constant step sizes are used to reflect the scenario of the ODEs
being solved within the context of solving the monodomain
or bidomain equation via operator splitting. Timings were
computed in Matlab R2010a on an HP Z400 with an Intel
Xeon W3520 2.66 GHz quad-core processor with 16 GB of
DDR3 RAM running 64-bit Ubuntu 9.04. Hyperthreading and
turbo-boost were enabled while the timings were computed.

From Table V, we find that the FE method wins on nine
models, the RL method wins on 24 models, and the GRL1
method wins on four models. Moreover, the RL method is
never more than about 50% less efficient than the FE method.
This confirms that the popularity of the RL method in practice
is well justified. The secrets to its success lie mainly in its
partitioning of the ODE system into gating and non-gating
variables and solving the equations for the gating variables
with an exponential integrator. The RL method has the best
combination of stability and computational expense per step
for moderately stiff models. Because the majority of the 37
cell models are moderately stiff, the RL method is the best
single method for most models. The GRL1 method is the most
efficient for three of the stiffest models, those of Bondarenko
et al. (2004), Pandit et al. (2001), and Pandit et al. (2003).

The performance of the partitioned method GRL1/FE|FE is
determined for five of the stiffest cell models, namely those



IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING JOURNAL , VOL.XX, NO. XX, XX 8

TABLE V
STEP SIZE, IN MILLISECONDS, AND EXECUTION TIME, IN SECONDS, OF THE FOUR NUMERICAL METHODS USING THE LARGEST STEP SIZE WITH LESS

THAN 5% MRMSERROR. THE SHORTEST EXECUTION TIME HAS BEEN HIGHLIGHTED IN BOLD TEXTFOR EACH MODEL.

Model FE RL GRL1
∆t Time ∆t Time ∆t Time

Beeler–Reuler (1977) 2.53E–2 3.53E–2 7.20E–1 1.40E–3 8.08E–1 3.85E–3
Bondarenko et al. (2004) 2.13E–4 2.23E+0 2.13E–4 2.28E+0 7.47E–3 8.41E–1
Courtemanche et al. (1998) 1.94E–2 2.11E–1 7.97E–2 5.60E–2 9.60E–2 3.01E–1
Demir et al. (1994) 5.95E–2 1.52E–2 5.32E–2 1.76E–2 1.18E–1 9.03E–2
Demir et al. (1999) 5.96E–2 1.74E–2 4.73E–2 2.36E–2 9.99E–2 1.26E–1
DiFrancesco–Noble (1985) 7.73E–2 8.21E–2 1.95E–1 3.40E–2 2.07E–1 3.22E–1
Dokos et al. (1996) 7.02E–2 2.87E–2 1.22E–1 1.64E–2 8.02E–2 2.78E–1
FitzHugh–Nagumo (1961) 2.72E–3 6.02E–3 NA NA 2.60E–3 1.35E–1
Faber–Rudy (2000) 1.12E–2 2.05E–1 2.01E–2 1.17E–1 4.06E–2 6.28E–1
Fox et al. (2002) 4.62E–3 2.94E–1 4.33E–2 3.31E–2 1.16E–1 8.77E–2
Hilgemann–Noble (1987) 6.25E–2 1.93E–2 8.06E–2 1.51E–2 1.52E–1 9.77E–2
Hund–Rudy (2004) 7.80E–3 3.11E–1 5.33E–3 4.85E–1 5.47E–3 4.88E+0
Jafri et al. (1998) 5.76E–4 3.65E+0 5.77E–4 3.59E+0 1.41E–3 1.71E+1
Luo–Rudy (1991) 1.35E–2 1.33E–1 1.23E–1 1.30E–2 3.15E–1 1.01E–2
Maleckar et al. (2008) 5.02E–2 7.86E–2 8.87E–2 4.60E–2 4.20E–1 1.29E–1
McAllister et al. (1975) 2.47E–2 7.35E–2 4.69E–1 4.41E–3 2.53E–1 2.38E–2
Noble (1962) 2.02E–1 2.83E–3 1.47E–1 3.69E–3 1.10E–1 1.77E–2
Noble–Noble (1984) 2.04E–1 5.65E–3 1.21E–1 9.57E–3 9.27E–2 1.21E–1
Noble et al. (1991) 5.15E–2 2.15E–2 1.53E–1 7.46E–3 1.04E–1 1.17E–1
Noble et al. (1998) 5.56E–2 5.37E–2 1.57E–1 1.96E–2 8.86E–2 3.47E–1
Nygren et al. (1998) 5.36E–2 9.44E–2 8.88E–2 5.88E–2 2.06E–1 2.77E–1
Pandit et al. (2001) 2.91E–4 4.94E+0 2.91E–4 5.13E+0 2.40E–2 6.02E–1
Pandit et al. (2003) 2.65E–5 5.55E+1 2.65E–5 5.68E+1 1.57E–2 9.67E–1
Puglisi–Bers (2001) 5.97E–3 1.39E+0 1.45E–2 7.81E–1 3.23E–2 1.04E+0
Sakmann et al. (2000) – Endo 6.90E–2 5.12E–2 4.99E–2 6.94E–2 4.16E–2 8.87E–1
Sakmann et al. (2000) – Epi 6.90E–2 5.24E–2 4.16E–2 8.32E–2 3.83E–2 9.67E–1
Sakmann et al. (2000) – M-cell 6.86E–2 5.26E–2 2.32E–1 1.51E–2 4.21E–1 8.80E–2
Stewart et al. (2009) 1.52E+1 4.42E–1 2.05E+2 3.48E–2 1.74E+2 3.78E–1
Ten Tusscher et al. (2004) –Endo 1.78E–3 1.77E+0 1.24E–1 2.65E–2 1.37E–1 2.18E–1
Ten Tusscher et al. (2006) –Endo 1.62E–3 1.29E+0 7.03E–2 3.10E–2 1.29E–1 1.67E–1
Ten Tusscher et al. (2004) –Epi 1.78E–3 1.79E+0 1.12E–1 2.97E–2 1.19E–1 2.51E–1
Ten Tusscher et al. (2006) –Epi 2.14E–3 9.86E–1 1.16E–1 1.90E–2 1.75E–1 1.23E–1
Ten Tusscher et al. (2004) –M-cell 1.76E–3 1.33E+0 1.21E–1 2.03E–2 1.02E–1 2.23E–1
Ten Tusscher et al. (2006) –M-cell 2.06E–3 1.01E+0 1.27E–1 1.72E–2 1.38E–1 1.54E–1
Wang–Sobie (2008) 1.66E–2 6.21E–2 5.27E–2 1.90E–2 9.36E–2 1.20E–1
Winslow31 1.07E–4 1.41E+1 1.07E–4 1.49E+1 9.38E–5 2.15E+2
Zhang et al. (2000) 9.97E–2 5.14E–2 4.57E–1 1.16E–2 3.04E–1 1.12E–1

of Bondarenko et al. (2004), Jafri et al. (1998), Pandit et al.
(2003), Ten Tusscher et al. (2006), and Winslow31, according
to the partitions reported in Table IV, and the results are
reported in Table VI. For GRL1/FE|FE,∆tns and∆ts are the
step sizes used in the non-stiff and stiff regions, respectively.

From Table VI, we see that GRL1/FE|FE is the most
efficient method for all five of the stiff models considered.
For the two stiffest models, namely that of Pandit et al. (2003)
and Winslow31, GRL1/FE|FE is almost5 and3 times faster,
respectively, than its next closest competitor. For these models,
RL is not the most efficient basic method; GRL1/FE|FE is
about 270 and 3 times faster than RL in these cases. For
the slightly less stiff models of Bondarenko et al. (2004) and
Jafri et al. (1998), GRL1/FE|FE is about9 and5 times faster
than its next closest competitor, respectively. We note RL is
the most efficient basic method for the model of Jafri et al.
(1998). Finally for the Endocardial variant of the model of Ten
Tusscher et al. (2006) that only has a single stiff variable,the
gating variablem, GRL1/FE|FE is 12% faster than its next
closest competitor, RL.

These improvements can generally be understood as fol-

lows. In the stiff regions, the GRL1/FE|FE method can gen-
erally take larger step sizes than the RL method applied
to the entire region because the partitioning of the ODEs
better captures the stiffness for treatment by the exponential
integrator than partitioning along the lines of gating vs. non-
gating variables. Moreover because the use of GRL1 is limited
to the relatively small number of stiff ODEs, it is also
computationally cheaper per step than RL. In the non-stiff
regions, GRL1/FE|FE reduces to FE, which is the cheapest
method per step out of those considered. The GRL1/FE|FE
method can also generally take larger steps on these regions
than the corresponding steps for FE applied to the entire region
because it is not impacted by restrictions from the stiff regions.
Based on this analysis we also expect that a method based on
partitioning the time interval into stiff and non-stiff regions
and applying RL and FE respectively to these regions would
outperform RL (see [4] and [5]) but not GRL1/FE|FE.

When solving the monodomain or bidomain model in
practice, other devices, such as table lookups of activation
and inactivation variables and switching to larger time steps
when all model points are depolarized, are often used to reduce
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TABLE VI
STEP SIZE, IN MILLISECONDS, AND EXECUTION TIME, IN SECONDS, OF THE BASIC METHODS(FE, RL, GRL1)AND THE PARTITIONED METHOD GRL1/FE|FE USING THE

LARGEST STEP SIZES THAT GIVES LESS THAN5% MRMS ERROR FOR FIVE OF THE STIFFEST CELL MODELS. THE SHORTEST EXECUTION TIME HAS BEEN HIGHLIGHTED IN

BOLD TEXT FOR EACH MODEL. FOR GRL1/FE|FE, ∆tns IS THE STEP SIZE USED BY THEFE METHOD IN THE NON-STIFF REGION AND∆ts IS THE STIFF STEP SIZE USED BY

THE GRL1/FE METHOD IN THE STIFF REGION.

Model FE RL GRL1 GRL1/FE|FE
∆t Time ∆t Time ∆t Time ∆tns ∆ts Time

Bondarenko et al. (2004) 2.13E–4 2.23E+0 2.13E–4 2.28E+0 7.47E–3 8.41E–1 3.02E–2 7.59E–3 9.59E–2
Jafri et al. (1998) 5.76E–4 3.65E+0 5.77E–4 3.59E+0 1.41E–3 1.71E+1 5.29E–3 2.29E–3 6.84E–1
Pandit et al. (2003) 2.65E–5 5.55E+1 2.65E–5 5.68E+1 1.57E–2 9.67E–1 1.99E–2 6.59E–3 2.10E–1
Ten Tusscher et al. (2006) –Endo 1.62E–3 1.29E+0 7.03E–2 3.10E–2 1.29E–1 1.67E–1 1.08E–1 1.00E–1 2.55E–2
Winslow31 1.07E–4 1.41E+1 1.07E–4 1.49E+1 9.38E–5 2.15E+2 5.00E–3 7.70E–5 4.85E+0

computation times [51]. The use of such devices would not be
expected to alter the applicability of the results of this study to
the monodomain or bidomain model. First, assuming the use
of table lookups is used on the dominant computational part of
f(t,y) from (1), its use would align the computational expense
per step for methods that use RL even more closely with that
of FE. This would increase the competitiveness of such RL-
based methods, especially for large simulations. Nonetheless,
the relative times between methods should remain comparable
to those reported. Second, switching to larger time steps when
all model points are depolarized can be related to the strategy
of adjusting the method and time step for each point based
on stiffness/non-stiffness intervals as described in Tables IV
and VI. The repolarization phase roughly corresponds to the
non-stiff regions. Hence the results from Table VI can be
thought of as a mechanism to increase the step sizeandswitch
to the most appropriate numerical method to reduce the overall
computation time.

V. CONCLUSIONS

Because of its overall efficiency and relative ease of imple-
mentation, the Rush–Larsen method is a popular and effective
method for solving the ODEs that describe the evolution of
dynamic myocardial cell models. The Rush–Larsen method
partitions the ODE system into gating and non-gating variables
and solves the equations for the gating variables with an
exponential integrator and the equations for the non-gating
variables with the forward Euler method. However, this ap-
proach cannot be expected to work well on cell models for
which the stiffness is not captured by the gating variables.
In this paper we demonstrate that in fact the stiffness in the
stiffest cell models is caused by non-gating variables, thus
leading to underperformance of the Rush–Larsen method. We
demonstrate that a generalized Rush–Larsen method of first
order performs well on the stiffest cell models. Using an
eigenvalue analysis, we are able to partition the ODEs and
the interval of integration into stiff and non-stiff subsets and
hence propose a partitioned method based on the generalized
Rush–Larsen and forward Euler methods that outperforms all
other basic methods considered on the stiffest cell models.In
order to assess the accuracy of a numerical solution to a cell
model, we also propose a new error norm based on a mixed
(absolute and relative) root mean square (MRMS) error that
performs more satisfactorily than the RRMS error norm.
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