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Abstract

Text collections can be represented mathematically
as term-document matrices. A term-document ma-
trix can in turn be represented using the matrix
factorization method known as the partial (or trun-
cated) singular value decomposition (PSVD). Re-
computing the PSVD when changes are made to
a text collection is very expensive. Folding-in is
one method of approximating the PSVD when new
documents are added to a term-document matrix;
updating the PSVD of the existing term-document
matrix is another method. The folding-in method
is computationally inexpensive, but it may cause
deterioration in the accuracy of the PSVD. The
PSVD-updating method is more expensive than
the folding-in method, but it maintains the accu-
racy of the PSVD. Folding-up is a method that
combines folding-in and PSVD-updating. When
a text collection expands in small increments,
folding-up provides a significant improvement in
computation time when compared with either re-
computing the PSVD or PSVD-updating, and it
reduces the loss of accuracy in the PSVD that
can occur with the folding-in method. This pa-
per introduces a new adaptive folding-up method
in which a measure of the error in the PSVD is
monitored to determine when it is most advanta-
geous to switch from folding-in to updating.

1 Introduction

Latent semantic indexing (LSI) is an information
retrieval (IR) method that represents a text collec-
tion as a term-document matrix [7]. LSI uses a ma-
trix factorization method known as the partial (or
truncated) singular value decomposition (PSVD)
to reduce noise in the data by projecting the term-
document matrix into a lower-dimensional vector

∗(Formerly Jane E. Tougas.) jmason@cs.dal.ca Fac-
ulty of Computer Science, Dalhousie University, Halifax,
NS, B3H 1W5, Canada. The work of this author is sup-
ported by NSERC Canada and the Killam Foundation.

†spiteri@cs.usask.ca Department of Computer Sci-
ence, University of Saskatchewan, Saskatoon, SK, S7N 5C9,
Canada. The work of this author is supported by a grant
from NSERC Canada.

space. Calculating the PSVD of a large term-
document matrix is so computationally expensive
that in LSI, most of the processing time is spent in
performing this computation [3, 4]. In a dynamic
environment, a term-document matrix is changed
frequently as new documents and terms are added.
Recomputing the PSVD of the term-document ma-
trix each time these changes take place can be pro-
hibitively expensive. A method known as folding-
in can be used to modify the PSVD, rather than re-
computing the PSVD each time changes are made
to the document collection. Folding-in is compu-
tationally efficient; however its accuracy may de-
grade very quickly. A more accurate approach
is to update the PSVD using a PSVD-updating
method [9, 4, 14]. Updating methods modify the
PSVD of the term-document matrix to reflect ad-
ditions to the text collection. Folding-up is a com-
bination of folding-in and PSVD-updating. When
additions to a text collection are made in small
increments, folding-up offers a significant improve-
ment in computation time when compared with ei-
ther recomputing or updating the PSVD, and yet it
results in little or no loss of accuracy [11]. This pa-
per introduces an effective and efficient new adap-
tive folding-up algorithm that uses an error thresh-
old to determine when to switch from folding-in to
updating.

The remainder of the paper proceeds as fol-
lows. Section 2 reviews background information
about term-document matrices, the singular value
decomposition (SVD), and the PSVD. Section 3.2
briefly describes methods of modifying the PSVD
of a term-document matrix when new documents
are added to the text collection and discusses
the objective and approach of the new adaptive
folding-up algorithm. Section 4 gives details of a
selection of the experiments performed and the re-
sults obtained, and Section 5 presents conclusions
and suggestions for future work.

2 Background

2.1 The Term-document Matrix. A term-
document matrix A has t rows and d columns,



where t is the number of semantically significant
terms and d is the number of documents. Se-
mantically significant terms are those terms that
are useful in differentiating between documents.
Words that occur in at least 80% of the doc-
uments are known as stopwords; they are typi-
cally not included in the term-document matrix [1].
In processing the text, a process known as stem-
ming is usually performed to reduce words to their
root form. By reducing words to a common con-
cept, retrieval performance may be enhanced. It
is also possible that stemming may relate nonrel-
evant terms, causing nonrelevant documents to be
retrieved. Perhaps the main benefit of stemming is
that it reduces the number of index terms and thus
the size of the term-document matrix. When the
number of documents is very large, stemming can
provide a significant saving in the storage needed
for the term-document matrix. There are a num-
ber of automatic stemming algorithms; the most
popular is Porter’s algorithm [1].

2.2 The SVD. The SVD is a matrix factoriza-
tion that captures important characteristics of a
matrix. Every matrix has an SVD, and the sin-
gular values of a matrix are always uniquely de-
termined [13]. Given a real matrix A with t rows
and d columns, its SVD has the form A = UΣVT,
where U ∈ <t×t, Σ ∈ <t×d, and V ∈ <d×d. Matri-
ces U and V are orthogonal matrices that contain
the left and right singular vectors of A respectively.
When A is a term-document matrix, the left singu-
lar vectors represent the term vectors, and the right
singular vectors represent the document vectors.
The matrix Σ has non-zero entries only on the di-
agonal, although not all diagonal entries are nec-
essarily non-zero. These diagonal entries are the
singular values of A. By convention, the singular
values are assumed to be in non-increasing order
and denoted by σj , for j = 1, 2, . . . , min (t, d). The
singular values are the non-negative square roots
of the eigenvalues of the product AAT [8]. The
number of non-zero singular values is the rank, r,
of the matrix.

2.3 The PSVD. Let matrices Uk and Vk be
the first k columns of U and V respectively, and
let matrix Σk be the leading submatrix of Σ with
k rows and k columns. Then Ak = UkΣkVT

k is
a lower-rank approximation of A, where k < r.
This is called the PSVD of matrix A. Using
this approximation of the term-document matrix
gives a dimensional reduction that has the effect of

diminishing the noise and emphasizing the latent
patterns in the data. For this reason, the matrix
Ak can be a better representation of the text
collection than the original term-document matrix
A. The optimal rank (number of singular values
and corresponding left and right singular vectors)
to use in the PSVD varies; it is also database
dependent [4]. Deciding what rank to use is based
on empirical testing [2]. In general, using a higher
rank does not necessarily give better retrieval
performance [7]. As the rank is increased, retrieval
performance tends to increase to a certain point,
but then it tends to decrease as the rank continues
to be increased [7, 4].

3 Updating Methods

When new documents and terms are added to a
text collection, the PSVD of the term-document
matrix needs to be modified in order to reflect the
changes to the text collection. As discussed in Sec-
tion 1, recomputing the PSVD is computationally
expensive. Other options are to modify the ex-
isting PSVD either by folding-in the new docu-
ments and terms, by using PSVD-updating algo-
rithms, or by using a folding-up algorithm that
combines folding-in and PSVD-updating. Note
that although this paper focuses on the addition
of documents, for each method discussed, the ad-
dition of terms follows a similar process. In the
following sections, let D ∈ <t×p contain p docu-
ment vectors to be added to the term-document
matrix A, and let Ak = UkΣkVT

k be the PSVD of
A, where k is the rank (number of singular values
and corresponding left and right singular vectors)
used.

3.1 Folding-in. The folding-in method projects
the new documents into the lower-dimensional
vector space by constructing the matrix Dk =
DT UkΣ−1

k and then appending Dk ∈ <t×p to
the bottom of matrix Vk to form V̂k. Note that
matrices Uk and Σk are not changed in any way
with this method. This means that as more and
more documents are folded in, the representation
of the dataset becomes less and less accurate.
Folding-in terms follows a similar process.

3.2 Updating. PSVD-updating algorithms for
LSI were introduced by O’Brien in his Master’s
thesis [9] and published in Berry, Dumais, and
O’Brien in 1995 [4]. In 1999, Zha and Simon [14]
presented PSVD-updating algorithms that give
superior results when compared to the PSVD-



updating algorithms of [4, 9]. More recently,
Brand [5] developed methods for modifying the
PSVD in the case that k ≤

√
min(t, d), where k

is the rank of the PSVD of a t × d matrix. This
condition is not met in our experiments, and con-
sequently we do not consider this method further.
Methods for updating the PSVD when new docu-
ments or new terms are added to the LSI-database
are a compromise between recomputing the PSVD
and folding-in. Although these methods are slower
than folding-in, they are much faster than recom-
puting the PSVD, and they can produce a more
accurate PSVD than folding-in [14, 10, 11]. Sec-
tion 3.2.1 describes Zha and Simon’s algorithm for
updating the PSVD of a term-document matrix
when documents are added to the document col-
lection. See [14] for further details.

3.2.1 Updating Documents. Again, let D ∈
<t×p be the term-document matrix containing the
document vectors to be appended to A, where p is
the number of new documents, and let Ã = [A,D]
be the updated term-document matrix. Let In

denote the identity matrix of size n. We assume
that the PSVD of A is available prior to updating.
The following method updates the PSVD of A to
give the PSVD of Ã.

Let D̂ =
(
It −UkUT

k

)
D ∈ <t×p. Form the

QR decomposition of D̂, QDRD = D̂, where
QD ∈ <t×p is orthonormal and RD ∈ <p×p is
upper triangular. Then

Ã = [A,D]
≈ [Ak,D]

= [Uk,QD]
[

Σk UT
k D

0 RD

] [
VT

k 0
0 Ip

]
.

Now let Â ∈ <(k+p)×(k+p) be the matrix defined
by

Â =
[

Σk UT
k D

0 RD

]
.

Form the SVD of Â such that

Â =
[
Ûk, Ûp

] [
Σ̂k 0
0 Σ̂p

] [
V̂k, V̂p

]T

,

where Ûk ∈ <(k+p)×k, Σ̂k ∈ <k×k, and V̂k ∈
<(k+p)×k. Then the rank k PSVD of Ã (the
updated PSVD) is

Ãk =
(
[Uk,QD] Ûk

)
Σ̂k

([
Vk 0
0 Ip

]
V̂k

)T

.

3.3 Folding-up. Tougas and Spiteri [11] in-
troduced the original folding-up algorithm and
showed it to be an attractive alternative to either
folding-in or PSVD-updating alone. The idea be-
hind folding-up is that when there are new docu-
ments (or terms) to be added, they are first folded-
in, and the original document vectors are stored for
later use. After a certain amount of folding-in has
been done, the changes that have been made by
the folding-in process are discarded, and the PSVD
is updated to represent the current document col-
lection using a PSVD-updating method, such as
that of Zha and Simon [14]. The original document
or term vectors that have been added to the LSI
database by the PSVD-updating process can then
be discarded. The goal of the folding-up method
is to switch from the process of folding-in to that
of using a PSVD-updating method before the ac-
curacy of the PSVD degrades significantly from
the folding-in process. After the PSVD-update has
been performed, the cycle begins again; documents
and/or terms are again folded-in until it is deemed
necessary to switch to a PSVD-updating method.
In folding-up, the PSVD-updating process can be
thought of as a correction step, but it is important
to decide at what point this step becomes necessary
in order to best exploit both the computational ef-
ficiency of folding-in and the computational accu-
racy of PSVD-updating.

3.4 Adaptive Folding-up. In the original
folding-up algorithm, documents are folded-in un-
til the number of folded-in documents reaches a
pre-selected percentage of the number of docu-
ments in the text collection, not including folded-
in documents. The choice of the percentage used
is empirically based. Adaptive folding-up is a
modification of that algorithm; in the adaptive
folding-up method, a measure of the error in the
PSVD produced by folding-in is monitored to de-
termine when it is most advantageous to switch
from folding-in to PSVD-updating. This adaptive
folding-up algorithm eliminates the need to choose
the percentage of documents that may be folded-in
before a PSVD-update occurs; instead it computes
a measure of the accumulated error, based on the
loss of orthogonality in the right singular vectors of
the PSVD produced by folding-in. The algorithm
uses an empirically determined error threshold, τ ,
to determine whether or not a PSVD-update is nec-
essary.

Before each new group of documents is folded-
in, the adaptive folding-up method computes the



error that would be introduced by folding-in these
documents. If adding this error to the accumulated
error causes it to exceed the error threshold of τ =
0.01, then PSVD-updating is performed instead
of folding-in. The accumulated error is then
reset to zero. The error threshold τ = 0.01
was established through extensive empirical testing
on the Medline, Cranfield, and CISI datasets.
Section 4.2 gives results using this error threshold
on larger datasets.

3.4.1 Establishing the Error Measure. Re-
call from Section 2.3 that the PSVD of the term-
document matrix A is Ak = UkΣkVT

k , where k is
the number of singular values used in the approx-
imation. Also recall that the columns of matrix
Vk are mutually orthogonal, and that folding-in p
documents appends p rows to the bottom of Vk,
yielding V̂k. This process corrupts the orthogonal-
ity of the columns of V̂k, potentially leading to a
misrepresentation of the text collection.

The product of an orthogonal matrix, and its
transpose is the identity matrix; therefore the loss
of orthogonality in V̂k can be measured by

‖V̂T
k V̂k − Ik‖F ,(3.1)

where ‖ · ‖F is the Frobenius matrix norm [8], and
Ik ∈ <k×k is the identity matrix. However, when
the term-document matrix is very large, comput-
ing Equation (3.1) as written is computationally
expensive. Because V̂k can be written as

V̂k =
[

Vk

Dk

]
,

the product V̂T
k V̂k can be expressed as

V̂T
k V̂k =

[
VT

k DT
k

] [
Vk

Dk

]

=
[
VT

k Vk + DT
k Dk

]
.(3.2)

Substituting Equation (3.2) into Equation (3.1),
and using the fact that the product of an orthogo-
nal matrix and its transpose is the identity matrix,
gives

‖VT
k Vk + DT

k Dk − Ik‖F = ‖Ik + DT
k Dk − Ik‖F

= ‖DT
k Dk‖F .(3.3)

In Equation (3.3) we take the Frobenius norm of
the matrix DT

k Dk, which is of size k × k; in order

to construct a largely dataset-independent error
measure, we divide Equation (3.3) by k. Thus,
the deterioration in the orthogonality of V̂k can
be measured by accumulating the error

‖DT
k Dk‖F

k
(3.4)

with each folding-in step. Using the result from
Equation (3.4) rather than Equation (3.1) to mon-
itor the deterioration in orthogonality offers sig-
nificant computational savings. This is because
V̂k is of size (d + p) × k whereas Dk is of size
p×k, with typically d À p, thus the multiplication
DT

k Dk is much less expensive than the multiplica-
tion V̂T

k V̂k. It is also less expensive to compute
the Frobenius norm of the smaller matrix.

In order to determine whether the error mea-
sure in Equation (3.4) is a valid measure of the
error the folding-in method causes in the PSVD,
we compare the error measure against the differ-
ence between the optimal and relative error in the
PSVD. The optimal-error measures the difference
between the original matrix A and the lower-rank
matrix Ak = UkSkVT

k , where Ak = UkSkVT
k is

the matrix formed when the PSVD of the term-
document matrix is recomputed each time changes
are made to the document collection. In this paper,
the computation is performed using Matlab’s svds
function for sparse matrices. The relative error
measures the difference between the original ma-
trix A and the lower-rank matrix Âk = ÛkŜkV̂T

k ,
where Âk = ÛkΣ̂kV̂T

k is the PSVD of A that has
been modified by the folding-in method. The op-
timal and relative error are defined by

‖A−Ak‖2F
‖A‖2F

and
‖A− Âk‖2F
‖A‖2F

,(3.5)

respectively. The optimal and relative error are
generally too computationally expensive to com-
pute in practice, but they can be computed for
relatively small test sets such as the Medline text
collection (1033 documents), the Cranfield collec-
tion (1398 documents), and the CISI text collec-
tion (1460 documents). Henceforth, the difference
between the optimal and relative error will be re-
ferred to as the PSVD-error.

Figures 1, 2, and 3 show a comparison of the
new PSVD-error introduced at each iteration with
the error computed using the error measure in
Equation (3.4), as documents are added to the
text collections. In each case, the vectors have
been normalized. Figure 1 shows the error com-
parison for the Medline text collection; the initial



matrix contains 533 documents, and there are 100
iterations of 5 documents added at each iteration.
Figure 2 shows the error comparison for the Cran-
field text collection; the initial matrix contains 598
documents, and there are 400 iterations of 2 docu-
ments added at each iteration. Figure 3 shows the
error comparison for the CISI text collection; the
initial matrix contains 460 documents, and there
are 100 iterations of 10 documents added at each
iteration. The figures show that although there
is not an exact correlation between the two error
measures, the loss of orthogonality error measure
from Equation (3.4) follows a very similar pattern
to that of the PSVD-error, suggesting that the er-
ror measure in Equation (3.4) is a useful measure
of the error in the PSVD caused by the folding-
in method. The results shown in Figures 1–3 are
a representative subset of the tests performed, and
are intended to present a variety of increment sizes.
Each of the datasets was tested with several in-
crement sizes; the number of documents added at
each iteration for a particular test was chosen from
the range of 1–20. The correlation as displayed in
Figures 1–3 was similar in each case.

With the adaptive folding-up method, the de-
terioration of the orthogonality of V̂k when doc-
uments are being added (or Ûk when terms are
being added) is monitored by accumulating the er-
ror computed by Equation (3.4) each time docu-
ments are folded-in. This corruption of orthogo-
nality is a measure of how much inaccuracy has
been introduced to the representation of the text
collection with the addition of new documents (and
terms). When the loss of orthogonality reaches the
empirically established error threshold of τ = 0.01,
the changes that have been made by the folding-
in method are discarded. PSVD-updating meth-
ods are then applied such that the modified PSVD
reflects the addition of all of the document (and
term) vectors that have been folded-in since the
last update. The process then continues with
folding-in until the next update.The process of
folding-up has the overhead of saving the docu-
ment vectors that are being folded-in between up-
dates; however, it repays this cost with a saving
in computation time, coupled with the precision
advantages of updating.

4 Experiments

For the sake of brevity, we present a represen-
tative selection of the experiments we have per-
formed. The experiments for this paper are run
on five text collections. These are the Medline,

Cranfield, and CISI collections [6], and two sub-
sets of the TREC 2003 HARD track [12]. These
subsets, subsequently referred to as HARD-1 and
HARD-2, contain 15000 and 30000 documents re-
spectively. They were created by randomly select-
ing documents from the HARD track text collec-
tion, with no document duplication within the sub-
sets. In each experiment the term-document ma-
trix for the whole text collection is partitioned into
an initial matrix and a number of smaller subma-
trices. The initial matrix is incrementally enlarged
by iteratively appending the submatrices, and the
average precision for each method is plotted at each
increment. Note that this precision is averaged not
only over the number of queries, but also over the
11 standard recall levels (0%, 10%, · · · , 100%). The
measure of similarity for each experiment is the
cosine similarity measure, which is the measure of
the cosine of the angle between each pair of vec-
tors [1, 2]. Note that search queries are represented
as t-dimensional vectors. For each text collection, a
local normalized term frequency weighting scheme
is used; no global weighting is used.

In each experiment, the PSVD of the initial
matrix is computed using the svds function for
sparse matrices in Matlab. For the Medline col-
lection, we use k = 125, where k is the num-
ber of singular values (and corresponding left and
right singular vectors) computed. For the CISI col-
lection, we use k = 150, and for the Cranfield,
HARD-1, and HARD-2 text collections, we use
k = 300. The choice of k is based on empirical
testing and/or available computational resources;
the use of an optimal value of k was not essential
for these experiments. For the sake of brevity, the
experiments described here use only document up-
dating. We note that similar results are produced
using term updating. Each experiment compares
the average precision for recomputing, folding-in
documents, PSVD-updating, the original folding-
up method, and the adaptive folding-up method.
In these experiments, Zha and Simon’s PSVD-
updating method is used; Zha and Simon have
clearly shown [14] that their updating method out-
performs O’Brien’s PSVD updating method [4, 9]
in terms of retrieval performance. We note that in
each experiment, the original folding-up method
uses a fixed percentage of 10% to determine how
many documents to fold-in before performing a
PSVD-update. Although this percentage is not
necessarily optimal for these datasets, previous
work has shown that it performs very well on a
variety of datasets. In each experiment, the error



threshold for the adaptive folding-up method is set
at 0.01. Table 1 gives a comparison of CPU times
(in seconds) for each of the experiments. These
times are computed using the cputime function in
Matlab.

4.1 Medline, Cranfield, and CISI Collec-
tions. The Medline text collection contains 1033
medical abstracts and 30 queries. After stopword
removal and stemming, there are 5735 terms. The
5735 × 1033 term-document matrix is partitioned
into an initial matrix with 533 documents, and
100 submatrices of size 5 are appended incremen-
tally. Figure 4 shows the average precision for each
method. The average precision for the folding-in
method deteriorates rapidly, whereas the average
precisions for the updating and adaptive folding-
up methods are very similar to that of recomputing
the PSVD each time new documents are added.

The Cranfield text collection contains 1398
aerospace systems abstracts and 225 queries. After
stopword removal and stemming, there are 4563
terms, giving a 4563×1398 term-document matrix.
This matrix is partitioned into an initial matrix
with 598 documents, and 400 submatrices of size 2
are appended incrementally. The average precision
for each method is shown in Figure 5. Note that in
this case the adaptive folding-up method is more
than 9 times faster than updating, and more than
1600 times faster than recomputing.

The CISI text collection contains 1460 infor-
mation retrieval abstracts and 35 queries. After
stopword removal and stemming, there are 5544
terms. The 5544 × 1460 term-document matrix is
partitioned into an initial matrix with 460 docu-
ments, and 100 submatrices of size 10 are appended
incrementally. Figure 6 shows the average preci-
sion for each method; as with Figures 4 and 5, the
average precision for the folding-in method deteri-
orates compared with the average precision for re-
computing, whereas the average precisions for up-
dating and adaptive folding-up do not degrade. See
Table 1 for a comparison of CPU times.

4.2 TREK 2003 HARD Track Subsets.
The HARD-1 text collection contains 15000 docu-
ments and 50 queries. After stopword removal and
stemming, there are 77250 terms. The 77250 ×
15000 term-document matrix is partitioned into
an initial matrix with 7500 documents, and 150
submatrices of size 50 are appended incrementally.
The HARD-2 text collection contains 30000 doc-
uments and 50 queries. After stopword removal

and stemming, there are 112113 terms, giving a
112113 × 30000 term-document matrix. This ma-
trix is partitioned into an initial matrix with 15000
documents, and 150 submatrices of size 100 are ap-
pended incrementally. Figures 7 and 8 show the av-
erage precisions for each method for the HARD-1
and HARD-2 text collections respectively. As with
Figures 5 and 6, the average precision for folding-in
deteriorates; in Figure 7, this deterioration is dra-
matic. In each case, the average precisions for the
updating and adaptive folding-up methods outper-
form those of the folding-in method. Table 1 gives
a comparison of CPU times for each experiment.
Note that in each case, the adaptive folding-up
method is faster than either updating or recom-
puting the PSVD. Because the adaptive folding-up
method has more computational overhead than the
original folding-up method, it is somewhat slower
than the original folding-up method for very small
datasets; for larger datasets such as Hard-1 and
Hard-2 however, Table 1 shows that the adap-
tive folding-up method is faster than the original
folding-up method.

4.3 Discussion Folding-up is a method that
combines folding-in and PSVD-updating. When
a text collection expands in small increments,
folding-up provides a significant improvement in
computation time when compared with either re-
computing the PSVD, or PSVD-updating, and it
reduces the loss of accuracy in the PSVD that can
occur with the folding-in method. The original
folding-up method switches from folding-in to up-
dating after a certain percentage of new documents
are added. The goal of the new adaptive folding-in
method is to establish a measure of the error in the
PSVD that can be monitored to determine when
it is most advantageous to switch from folding-in
to updating. This eliminates the need to choose
the percentage of new documents to be used in the
original folding-up method. The percentage cho-
sen in the original folding-up method is an empiri-
cally based best guess; in this paper we use 10% for
each dataset. Although this gives good results in
terms of average precision, fewer (larger) PSVD-
updates are performed than with the adaptive
folding-up method. Because the PSVD-updating
method uses expensive QR and SVD computations
on intermediate matrices, on large datasets, per-
forming fewer large PSVD-updates can be more
costly than performing a greater number of smaller
PSVD-updates. This is why adaptive folding-
up is more efficient than the original folding-up



method for the larger datasets discussed in Sec-
tion 4.2. For each of the experiments in Sec-
tion 4, adaptive folding-up performs more PSVD-
updates than the original folding-up method. Low-
ering the percentage used in the original folding-
up method would increase the number of PSVD-
updates performed and decrease their size, but this
does not necessarily give better performance than
the adaptive folding-up method. With the origi-
nal folding-up method, PSVD-updates are evenly
spaced, whereas with the adaptive method, up-
dates are performed when the accumulated error
exceeds the established threshold. For each dataset
and each increment size there is a crossover point
at which it is less efficient to do fewer larger PSVD-
updates than to do more smaller PSVD-updates.
Table 2 gives a comparison of the number of PSVD-
updates performed by each folding-up method for
each experiment in Sections 4.1 and 4.2.

5 Conclusions

The experiments demonstrate that over a variety of
text collections, when new documents are added to
the collection in small groups, the adaptive folding-
up method is a viable alternative to either recom-
puting the PSVD or using only a PSVD-updating
method. In these experiments, adaptive folding-
up achieves average precision similar to that of re-
computing the PSVD, but it requires significantly
less computation time than either recomputing or
updating the PSVD. The goal of the folding-up
method is to switch from the process of folding-in
to that of using a PSVD-updating method before
the accuracy of the numerical representation of the
database degrades significantly from the folding-in
process. This goal is facilitated by using the empir-
ically established error measure threshold τ = 0.01
to determine when the loss of orthogonality has be-
come too great during the folding-in stage of the
adaptive folding-up algorithm. Further research
with larger datasets is ongoing.

Loss of orthogonality caused by the folding-
in process is not the only possible error measure
to use in determining when it is time to stop
folding-in and do a PSVD-update step. Another
possibility is to measure the distance between
new document vectors and their lower-dimensional
projections. The idea is that if the distance
between these vectors is small, then the documents
could be folded-in, but if the distance is large, then
the documents would be added using a PSVD-
updating step.
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Figure 1: Comparison of normalized error for the Medline collection: 500 documents are added in 100 groups
of 5.
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Figure 2: Comparison of normalized error for the Cranfield collection: 800 documents are added in 400 groups
of 2.
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Figure 3: Comparison of normalized error for the CISI collection: 1000 documents are added in 100 groups of
10.
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Figure 4: Average precisions for the Medline collection: 500 documents are added in 100 groups of 5.



600 700 800 900 1000 1100 1200 1300
0.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

Number of Documents

A
ve

ra
ge

 P
re

ci
si

on

 

 

Recomputing
PSVD−updating
Original Folding−up
New Adaptive Folding−up
Folding−in

Figure 5: Average precisions for Cranfield collection: 800 documents are added in 400 groups of 2.
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Figure 6: Average precisions for CISI collection: 1000 documents are added in 100 groups of 10.
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Figure 7: Average precisions for HARD-1 collection: 7500 documents are added in 150 groups of 50.
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Figure 8: Average precisions for HARD-2 collection: 15000 documents are added in 150 groups of 100.



Medline Cranfield CISI HARD-1 HARD-2

Method CPU times CPU times CPU times CPU times CPU times

Recomputing 9416.18 354556.25 17546.07 391487.60 587773.98
Updating 80.79 1972.97 131.09 1977.16 9020.10
Original Folding-up 16.54 91.70 36.46 1653.01 8175.15
Adaptive Folding-up 19.68 209.01 46.47 1306.58 6176.66
Folding-in 2.47 46.32 4.02 21.05 40.99

Table 1: Comparison of total CPU times (in seconds) for the Medline, Cranfield, CISI, HARD-1, and
HARD-2 text collections.

Medline Cranfield CISI HARD-1 HARD-2

Method PSVD-updates PSVD-updates PSVD-updates PSVD-updates PSVD-updates

Original Folding-up 7 9 13 7 7
Adaptive Folding-up 13 41 14 12 10

Table 2: Comparison of the number of PSVD-updates in the original and adaptive folding-up methods,
for the Medline, Cranfield, CISI, HARD-1, and HARD-2 text collections.


