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1. Abstract

In this paper we outline a technique for developing variational integrators for

Lagrangian systems with constraints linear in the velocity. An example shows

the excellent potential this technique has for producing long time accurate and

geometrically faithful integrators.
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The general example of constructing a constrained variational from any explicit

method, such as Euler or Runge–Kutta is given here.

Routh’s sphere is introduced as an example of a rolling rigid body with a non-

holonomic constraint that we would like to develop an integrator for.

2. Classical Lagrangian Mechanics

We briefly describe the mathematical setting for Lagrangian mechanics and show

how to obtain the Euler–Lagrange differential equations of motion. For a more

detailed description of the classical formulation of Lagrangian mechanics, see, for

example, Marion and Thornton [8].

Configuration space is the set of all possible configurations of a system. This can

be as simple as the set R3 for a free particle or as complicated as a product of Lie

groups for coupled rigid bodies. The configuration space of a system is traditionally

denoted by Q. We restrict our attention to systems for which Q = Rn and write a

point as (q1, q2, . . . , qn).

Phase space is the combined set of all possible configurations and all possible

velocities of a system. It is the tangent space of Q, denoted TQ. When Q = Rn,

TQ = R2n. The points of TQ will be written (q1, q2, . . . , qn, q̇1, q̇2, . . . , q̇n). For a

physical motion of the system, a phase point specifies its actual configuration and

its actual velocity.

Example: Two dimensional simple harmonic oscillator. This system

consists of a mass in the plane, m, attached to two mass-less springs with spring

constant k. The configuration space is R2, where we will write q1 = x and q2 = y.
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Phase space is R4, where each point is specified as (x, y, ẋ, ẏ). See figure (2). ♦
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Figure 1. Two dimensional simple harmonic oscillator

Let the kinetic energy of a system be denoted by T and the potential energy by

U . The Lagrangian for a system is defined to be L = T − U .

Example: Two dimensional simple harmonic oscillator continued. The

kinetic energy of the mass is T = m
2 (ẋ2 + ẏ2). The potential energy is U =

k
2 (x2 + y2). This gives the Lagrangian as

(1) L = T − U =
m

2
(ẋ2 + ẏ2)− k

2
(x2 + y2).

♦

Let q(t) be a curve in Rn on the interval [ ta, tb ] and q̇(t) its derivative. The

action is given by

(2) S[q(t)] =

∫ tb

ta

L(q(t), q̇(t))dt.

Note that the action is a line integral over the curve (q(t), q̇(t)) in R2n.
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The calculus of variations provides a necessary condition for the curve (q(t), q̇(t))

to be a physical trajectory. See for example Gelfand and Fomin [5] for the theory

of variational calculus. The variational principle requires that the curve q(t) be a

critical point of the action function with respect to the variational derivative when

the endpoints, q(ta) and q(tb) are fixed. That is, we search for trajectories such

that

(3) δS[q(t)]δq(t) = 0,

where δS is the variation of S and δq(t) is the variation of q(t). We typically

suppress the t in the notation for δq(t) and write only δq. In what follows a

repeated index indicates a sum, so

∂L

∂q̇i
δqi means

n∑

i=0

∂L

∂q̇i
δqi.

The fixed endpoint condition requires δq(ta) = δq(tb) = 0. The variation of S is

δS[q(t)]δq =

∫ tb

ta

δL(q(t)q̇(t))dt

=

∫ tb

ta

(
∂L

∂qi
δqi +

∂L

∂q̇i
d

dt
δqi
)
dt

=
∂L

∂q̇i
δqi
∣∣∣∣
tb

ta

+

∫ tb

ta

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
δqi dt.(4)

The last equality follows by an integration by parts. By the fixed endpoint condi-

tion, the first term in equation (4) vanishes. Then δS[q(t)]δ = 0 only if

(5)
∂L

∂qi
− d

dt

∂L

∂q̇i
= 0 i = 1 . . . n.
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Equations (5) are called the Euler–Lagrange equations. They are a system of

second–order differential equation on configuration space Rn in the variables (q1, q2, . . . , qn).

Example: Two dimensional simple harmonic oscillator continued. The

Lagrangian for the two dimensional simple harmonic oscillator is given in equa-

tion (1). Configuration space is R2 with points denoted (x, y), so there are two

second–order differential equations: one in x and one in y. The equation for x is:

∂L

∂x
− d

dt

∂L

∂ẋ
= 0,

−kx− d

dt
(mẋ) = 0,

kx+mẍ = 0,

where ẍ =
d2x

dt2
. The y equation is derived similarly as

ky +mÿ = 0.

Writing ω =
√

k
m , the solution for initial conditions (x0, y0, ẋ0, ẏ0) is

x(t) = x0 cos(ωt) + ẋ0 sin(ωt),

y(t) = y0 cos(ωt) + ẏ0 sin(ωt).

♦
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2.1. The Euler–Lagrange Equations as a First Order System. To write the

Euler–Lagrange equations as a set of first order equations on phase space, R2n

assume that the kinetic energy as a function on phase space R2n is

T (q, q̇) =
1

2
q̇TM(q)q̇,

where M is an n × n positive definite symmetric q dependent matrix. Written in

coordinates, it looks like

T (q, q̇) =
1

2
Mij(q)q̇

iq̇j .

Also, assume that the potential energy is a function of q only. Then the Euler–

Lagrange equations are

∂

∂qi
(T − U)− d

dt

∂

∂q̇i
(T − U) = 0,

∂T

∂qi
− ∂U

∂qi
− d

dt
(
∂T

∂q̇i
) = 0,

∂T

∂qi
− ∂U

∂qi
− ∂2T

∂qj∂q̇i
q̇j − ∂2T

∂q̇j∂q̇i
q̈j = 0,

where i, j = 1 . . . n and q̈ =
d2q

dt2
. To simplify this discussion, assume that

∂T

∂qi
= 0.

Then,
∂2T

∂q̇j∂q̇i
= Mji and the Euler–Lagrange equations are

−∂U
∂qi
−Mij q̈

j = 0.

Write the inverse of M in components as M ij and solve for q̈,

q̈j = −M ij ∂U

∂qi
.
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The Euler–Lagrange equations, when T does not depend on q, are then

dqi

dt
= q̇i,

dq̇i

dt
= −M ij ∂U

∂qj
.

This first order system corresponds to the flow of the vector field XE on R2n where

XE(q1, . . . , qn, q̇1, . . . , q̇n) = (q̇1, . . . , q̇n,−M1i ∂U

∂qi
, . . . ,−Mni ∂U

∂qi
).

The flow of XE is denoted FLt . It is a smooth map of R2n to R2n that evolves a

point along solutions for a time t. FLt can be written in the form

FLt (q, q̇) = (F qt (q, q̇), F q̇t (q, q̇)),

where F qt evolves the q components and F q̇t evolves the q̇ components. F qt (q0, q̇0)

corresponds to solutions on Q of the Euler–Lagrange equations with initial condi-

tions (q0, q̇0).

2.2. Summary. The process of Lagrangian mechanics involves the following steps:

(1) Find an appropriate configuration space, Q.

(2) Write the Lagrangian, L = T − U .

(3) Write the Euler–Lagrange equations (5).

(4) Solve the Euler–Lagrange equations.

The last step of the process is often problematic as the equations can be quite

complicated. In such cases where a solution is difficult, or impossible, to find, we

rely on numerical methods.
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3. Constrained Lagrangian Mechanics

Given a mechanical system, other mechanical systems can obtained by constrain-

ing the phase points to a subset of phase space. For example, a pendulum system is

obtained from a free particle system by constraining the mass to a circle of fixed ra-

dius. The variational principle, as given above, is only applicable to unconstrained

systems. To include constraints in the theory, the variational principle must be

augmented with D’Alembert’s principle.

See Rosenberg [11] for a complete discussion of D’Alembert’s principle. We

follow Marsden and Ratiu [9] in our treatment of the related Lagrange–D’Alembert

principle.

3.1. Lagrange–D’Alembert Principle. The variations, δq(t), as introduced in

the variational principle equation (4), are meant to represent the directions in

which a configuration is allowed to change at time t. For the two dimensional simple

harmonic oscillator, and all other similar systems, the variations are arbitrary. This

freedom is what allows us to conclude that

(6)

∫ tb

ta

(
∂L

∂qi
− d

dt

∂L

∂q̇i
) δqi dt = 0 ⇒ ∂L

∂qi
− d

dt

∂L

∂q̇i
= 0,

hence obtaining the Euler–Lagrange equations.

Let D be a d–dimensional linear subspace of Rn, where d < n, and let M =

{ (q, q̇) | q̇ ∈ D }. Note that D is a linear subspace of Rn whereas M is subset of

R2n that is linear in the velocity variables. The sets D and M are equivalent, but

serve different purposes. D restricts variations and velocities and M restricts phase

points. Also note that the specification of D gives M . When δq is restricted to lie

in D the implication in (6) need not hold. Adding constraints removes degrees of
9



freedom in choosing the δqi so that equation (3) may hold for many curves. The

Lagrange–D’Alembert principle directly removes this arbitrariness by forcing the

following:

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
δqi = 0,(7)

δq ∈ D,(8)

(q(t), q̇(t)) ∈M.(9)

Since the Euler–Lagrange equations (7) vanish on the linear subspaces of D, equa-

tions (7) to (9) can be replaced by

∂L

∂qi
− d

dt

∂L

∂q̇i
= λaφ

a
i ,(10)

φaj (q)q̇j = 0,(11)

where a = 1 . . . n − d and each φa is row vector orthogonal to D. Each λa is

a Lagrange undetermined multiplier. As first order equations for the Lagrangian

L = 1
2 q̇
TMq̇ − V (q), equations (10) and (11) are

dqi

dt
= q̇i,(12)

dq̇i

dt
= −M ij ∂V

∂qj
+ λaφ

a
i , ,(13)

φai (q)q̇i = 0.(14)

Equations (12) and (13) are an index two set of differential–algebraic equations.

See Ascher and Petzold [2] for more details. If the constraints are holonomic,

then equation (14) can be integrated and replaced by f a(q) = 0, where dfa

dt =

10



φai (q)q̇i. This transforms the equations to an index three set of differential–algebraic

equations.

Example: Two dimensional simple harmonic oscillator constrained to

the unit circle. Let e1 and e2 be the standard unit vectors in R2. To constrain

the mass to the unit circle D = span{−ye1 + xe2 }. Construct M as follows:

(ẋ, ẏ) ∈ D ⇔ (ẋ, ẏ) = α(−y, x) for some α.

Eliminating α, we get M = { (x, y, ẋ, ẏ) |xẋ+ yẏ = 0 }. That is, M is the zero level

set of the function c(x, y, ẋ, ẏ) = xẋ+ yẏ.

The Lagrangian is still kinetic energy plus potential energy:

L(x, y, ẋ, ẏ) =
m

2
(ẋ2 + ẏ2)− k

2
(x2 + y2).

The variation δq = (δx, δy) has to be in D, so we must have xδx + yδy = 0.

Equations (7), (8), (9) are then, respectively,

(kx+mẍ)δx+ (ky +mÿ)δy = 0,(15)

xδx+ yδy = 0,(16)

xẋ+ yẏ = 0.(17)

Multiply equation (15) through by x and substitute equation (16) into it. We

obtain,

(18) (kx+mẍ)(−yδy) + (ky +mÿ)xδy = 0.
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The δy variation is arbitrary, so that

(19) −y(kx+mẍ) + (ky +mÿ)x = 0.

Differentiate equation (17) with respect to t and use it to eliminate ẍ in equa-

tion (19) to get

(20) ÿ + (ẋ2 + ẏ2)y = 0,

where we used the fact that x2 + y2 = 1. Using the constraint equation (17)

eliminate ẋ in equation (20). Also, since x2 + y2 = 1, eliminate x2 to get the final

equation:

(1− y2)ÿ + yẏ = 0.

This is a second order equation in y. ♦

Example: Nonholonomic free particle. The nonholonomic free particle is

a free particle in R3 subject to the constraint ż = yẋ. This gives

M = { (x, y, z, ẋ, ẏ, ż) | ż − yẋ = 0 },

D = span{ e1 + ye3, e2 }.

Following the same routine as in the two dimensional simple harmonic oscillator,

the equations of motion of motion are:

ẍ+
y

1 + y2
ẋẏ = 0,
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ÿ = 0.

♦

A fundamental difference exists between the examples of the constrained two di-

mensional simple harmonic oscillator and the nonholonomic free particle in that the

constraint of the former can be integrated, whereas the latter cannot. This means

that there is nothing more than can be done with the equations for the nonholo-

nomic free particle. For the two dimensional simple harmonic oscillator, however,

there is a change of coordinates that adapts the equations to the constraints and

results in a lower dimensional Lagrangian system. The following example illustrates

this.

Example: Two dimensional simple harmonic oscillator constrained to

the unit circle continued. Change to polar coordinates (r, θ).

x = r cos θ,

y = r sin θ.

Then, differentiating, xẋ + yẏ = ṙ = 0. Since the mass is on the unit circle,

ṙ = 0 integrates to r = 1 for the constraint in polar coordinates. This gives

δq = (δr, δθ) = (0, δθ), so that δθ is free and the equations of motion from the

variational principle in polar coordinates are

∂L

∂θ
− d

dt

∂L

∂θ̇
= 0,

13



where L(r, θ, ṙ, θ̇) = m
2 θ̇

2 − k
2 . ♦

Mechanical systems with integrable constraints are called holonomic, while those

with non integrable constraints are called nonholonomic. Note that it is not nec-

essary that each constraint be integrable, but that the constraint set, M be the

phase space for some configuration space. These constraint sets need not look like

R2k, even if they are integrable, as the example with the two dimensional simple

harmonic oscillator illustrates.

Holonomic systems can be reduced to mechanical systems on configuration spaces

of the same dimension as D, while nonholonomic systems must be analysed on

the full phase space. In essence, this allows holonomic systems to be treated as

unconstrained systems by adapting the coordinate system to the constraints.

4. Discrete Lagrangian Mechanics

In this section we show how to use curves to develop a discrete Lagrangian

mechanical theory in analogy with the continuous theory.

Let ψh : (−a, a) × U → Q be a differentiable map for some a ∈ R and U open

in TQ. Let α+ : [0, a) → [0,∞) and α− : [0, a) → (−∞, 0] have the property

α+(t)− α−(t) = t for all t in [−a, a]. Require ψh to be such that

(1) ψh(0, (q, q̇)) = q,

(2)
∂ψh
∂t

(0, (q, q̇)) = q̇,

(3) ψh(t, (q, q̇)) = q + tq̇ +O(t2).

These conditions guarantee that the image of ψh is a differentiable curve through

q with tangent vector q̇ at t = 0. Define the maps

∂+
h (q, q̇) = ψh(α+(h), (q, q̇)) ∂−h (q, q̇) = ψh(α−(h), (q, q̇)).

14



The number a must be small enough that the map ∂±h (q, q̇) = (∂+
h (q, q̇), ∂−h (q, q̇))

be invertible for each (q, q̇) in U when h ∈ (0, a].

The map ψh is a curve in configuration space Rn for every (q, q̇) in phase space

R2n. The maps ∂+
h and ∂−h are then the endpoints of the curve over the interval

[α−(h), α+(h)].

Let L be the Lagrangian for a mechanical system and define the discrete La-

grangian by

Ld(q, q̇) =
1

h

∫ α+(h)

α−(h)

L(ψh(q(t), q̇(t)),
∂ψh
∂t

(t, (q, q̇))) dt+O(h2).

The discrete Lagrangian is, therefore, an approximation to the average of the con-

tinuous Lagrangian on the curve given by ψh over the interval [α−(h), α+(h)].

Let qd = {qk}Nk=0 and q̇d = {q̇k}Nk=0 be N + 1 element sequences in Rn. Require

that q̇d be such that ∂+
h (qk, q̇k) = qk+1 and ∂−h (qk, q̇k) = qk. This forces the

endpoints of the curve segments ψh(t, (qk, q̇k)) and ψh(t, (qk+1, q̇k+1)) to join up.

Define the discrete action on the sequence qd to be

Sh(qd) =
N∑

k=0

Ld(qk, q̇k)h.

This is an approximation of the continuous action in equation (2) by approximating

the integral. Denote the derivative operator by D. Let δqd = {δqk}Nk=0 be a

sequence of vectors such that the vector δqk has base point at qk. We define

another sequence of vectors δq̇d = {δq̇k}Nk=0 that satisfy the conditions

(21) D∂+
h (qk, q̇k)(δqk, δq̇k) = δqk+1, D∂−h (qk, q̇k)(δqk, δq̇k) = δqk.

15



A sequence of vectors { δqk , δq̇k } that satisfy equation (21) are called a discrete

variation. The discrete variational principle is

DSd(qd)δqd = 0,(22)

q0, qN fixed,(23)

∂+
h (qk, q̇k) = ∂−h (qk+1, q̇k+1).(24)

The resulting equations, for each k = 1, . . .N − 1 are

D∂−h (qk, q̇k)(δqk, δq̇k) = 0,(25)

D∂+
h (qk+1, q̇k+1)(δqk+1, δq̇k+1) = 0,(26)

D∂+
h (qk, q̇k)(δqk, δq̇k) = D∂−h (qk+1, q̇k+1)(δqk+1, δq̇k+1),(27)

DLd(qk, q̇k)(δqk, δq̇k) +DLd(qk+1, q̇k+1)(δqk+1, δq̇k+1) = 0,(28)

∂+
h (qk, q̇k) = ∂−h (qk+1, q̇k+1).(29)

Equations (25) and (26) are the fixed endpoint conditions equation (23). Equa-

tion (27) guarantees that the sequence { δqk , δq̇k } is a discrete variation. Equa-

tion (29) is equation (22) written out for the kth term.

To obtain evolution equations, the system in equations (25) to (29) must be

solved in two stages. The first stage is to find n linearly independent variations

from equations (25) to (27). These equations are a set of 3n linear equations in

the 4n unknowns (δqk, δq̇k, δqk+1, δq̇k+1) that hold for (qk, q̇k, qk+1, q̇k+1). When h

is small enough to guarantee that ∂±h is invertible, an n parameter set of solutions

can be guaranteed for this system.
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To obtain the discrete evolution equations, choose a set of n linearly independent

solutions. These go into the (δqk, δq̇k) and (δqk+1, δq̇k+1) of equation (28) one at a

time to produce n equations. With equation (29) there are 2n equations in the 2n

unknowns (qk+1, q̇k+1).

The following example shows how to obtain the symplectic Euler method using

this technique.

Example: Symplectic Euler. Let M be a constant mass matrix and V (q) a

potential function. Then L(q, q̇) = 1
2 q̇
TMq − V (q). Let ψh(t, (q, q̇)) = q + tq̇,

α+(t) = t and α−(t) = 0. Use a left endpoint approximation to

1

h

∫ h

0

L(q + tq̇, q̇) dt

to obtain the discrete Lagrangian

Ld(q, q̇) = L(q, q̇).

Then ∂+
h (q, q̇) = q + hq̇ and ∂−h (q, q̇) = q. Compute the derivatives of these maps

to get

D∂+
h (q, q̇) =

[
I hI

]
, D∂−h (q, q̇) =

[
I 0

]

where I is the n× n identity matrix and 0 is the n× n zero matrix. This gives

D∂−h (qk, q̇k)(δqk, δq̇k) = δqk,

D∂+
h (qk+1, q̇k+1)(δqk+1, δq̇k+1) = δqk+1 + hδq̇k+1.

17



Then equations (25), (26), and (27) give

δqk = 0 and δq̇k arbitrary,

δqk+1 = −hδq̇k+1,

hδq̇k = δqk+1.

Parametrise the solution set by δq̇k to get

δqk = 0, δq̇k arbitrary, δqk+1 = hδq̇k, δq̇k+1 = −δq̇k.

Then, equation (28) is

∂Ld
∂q̇i

(qk, q̇k)δq̇ik −
∂Ld
∂qi

(qk+1, q̇k+1)hδq̇ik −
∂Ld
∂q̇i

(qk+1, q̇k+1)δq̇ik = 0.

For each i, let

(30) δq̇ik = 1, δq̇ji = 0 forj = 1 . . . n, j 6= i.

Equation (30) selects n linearly independent variations, and gives the set of equa-

tions

Mij q̇
j
k − h

∂V

∂qi
(qk+1)−Mij q̇

j
k+1 = 0.

Rearranged, and with equation (29)

q̇ik+1 = q̇ik − hM ij ∂V

∂qj
(qk+1),(31)

qk+1 = qk + hq̇k,(32)

18



for i = 1 . . . n. These equations are formally implicit in the first set and explicit in

the second set and are called the symplectic Euler method. See Hairer et. al. [6] for

more on the symplectic Euler method. Of course, one can substitute equation 32

into equation 31 to obtain a fully explicit set of equations. ♦

Example: Two dimensional simple harmonic oscillator – symplectic Eu-

ler integration. Here we have

M =



m 0

0 m


 , M−1 =




1
m 0

0 1
m


 , V (x, y) =

k

2
(x2 + y2).

Then, equations (31) and (32) are

ẋk+1 = ẋk −
k

m
hxk+1,

ẏk+1 = ẏk −
k

m
hyk+1,

xk+1 = xk + hẋk,

yk+1 = yk + hẏk.

Or, equivalently,

ẋk+1 = ẋk −
k

m
h(xk + hẋk),

ẏk+1 = ẏk −
k

m
h(yk + hẏk).

19



♦

4.1. Two Dimensional Simple Harmonic Oscillator. In this section, we com-

pare the symplectic Euler method with the classic fourth order Runge–Kutta and

ode45 package from MatLab for the two dimensional simple harmonic oscillator

integrated over 20000 oscillations. Over this long time, the symplectic Euler pro-

vides considerably better results than the other methods, even though it is only

first order. The step size for the Runge–Kutta and the symplectic Euler methods

is 0.25.

First, recall the equations of motion,

kx+mẍ = 0, ky +mÿ = 0.

Energy and angular momentum are, respectively,

E =
m

2
(ẋ2 + ẏ2) +

k

2
(x2 + y2), p = ẏx− ẋy.

Both of these quantities are conserved, since

dE

dt
= 0,

dp

dt
= 0.

See figure (4.1) for the plots of energy and momentum. It is clear from this

picture that the symplectic Euler method preserves these natural invariants while

the others do not. The initial conditions are (x(0), y(0), ẋ(0), ẏ(0)) = (1, 0, 0, 1),

which produces the solution curve (x(t), y(t)) = (cos t, sin t), which is a circle of

radius 1 when x and y are plotted against each other. Figure (4.1) plots the errors
20
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in the various methods for x2 + y2− 1. Again, the symplectic Euler method gives a
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superior plot. It should be noted that none of these methods are explicitly designed

to preserve energy, momentum or the unit circle.
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5. Discrete Constrained Lagrangian Mechanics

Let D be a constraint, as described in the Lagrange–D’Alembert principle from

section 3.1. To implement constraints in discrete mechanics,introduce the differen-

tiable mapping φh : (−a, a)×U → Q, for an open subset U ⊂ TQ and require that

φh satisfy the following conditions:

(1) φh(0, (q, q̇) = q,

(2) ∂φh
∂t (0, (q, q̇)) = q̇,

(3) ∂φh
∂t (t, (q, q̇)) ∈ D for t ∈ [α−(h), α+(h)].

For a given (q, q̇), the image of φh is a curve for which every velocity vector satisfies

the constraint. Define φ+
h (q, q̇) = φh(α+(h), (q, q̇)) and φ−h (q, q̇) = φh(α−(h), (q, q̇)).

5.1. Discrete Lagrange–D’Alembert Principle. The discrete variational prin-

ciple needs to be augmented in order to constrain it to D. The discrete Lagrange–

D’Alembert principle is

DSd(qd)δqd = 0,(33)

q0, qN fixed,(34)

∂+(h)(qk, q̇k) = ∂−(qk+1, q̇k+1),(35)

φ+
h (q̄k, ˙̄qk) = ∂+

h (qk, q̇k), φ−h (q̄k, ˙̄qk) = ∂−h (qk, q̇k) some (q̄k, ˙̄qk),(36)

φ+
h (q̄k+1, ˙̄qk+1) = ∂+

h (qk+1, q̇k+1), φ−h (q̄k+1, ˙̄qk+1) = ∂−h (qk+1, q̇k+1) some (q̄k+1, ˙̄qk+1),

(37)

D∂+
h (qk, q̇k)(δqk, δq̇k) ∈ D.(38)
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Equations (33), (34) and (35) are the usual ones for the discrete variational princi-

ple. Equations (36) and (37) force the unconstrained curves ψh to have endpoints

that can be joined by curves that satisfy the constraint. Note that ψh need not

satisfy the constraint, but all points in the evolution will be reachable by curves

that do satisfy the constraint. Also, the points q̄ and ˙̄q are not necessarily points in

the evolution, but auxiliary points that must be found in order to select the correct

curve. The final equation (38) forces the variation to be in D for each k.

The discrete evolution equations are

D∂−h (qk, q̇k)(δqk, δq̇k) = 0,(39)

D∂+
h (qk+1, q̇k+1)(δqk+1, δq̇k+1) = 0,(40)

D∂+
h (qk, q̇k)(δqk, δq̇k) = D∂−h (qk+1, q̇k+1)(δqk+1, δq̇k+1),(41)

DLd(qk, q̇k)(δqk, δq̇k) +DLd(qk+1, q̇k+1)(δqk+1, δq̇k+1) = 0,(42)

∂+
h (qk, q̇k) = ∂−h (qk+1, q̇k+1),(43)

φ+
h (q̄, ˙̄q) = ∂+

h (qk+1, q̇k+1),(44)

φ−h (q̄, ˙̄q) = ∂−h (qk+1, q̇k+1),(45)

D∂+
h (qk, q̇k)(δqk, δq̇k) ∈ D.(46)

As in the unconstrained case, an n parameter set of solutions of the linear equa-

tions (39), (40) and (41) can be found. The constraint in equation (46) also must

be satisfied, which reduces the dimension of the solution set from n to d, where

n−d is the number of constraints. Equations (44) and (45) give 2n more equations

and add n+d variables (q̄, ˙̄q). There are only n+d variables because there are only
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d degrees of freedom in choosing the ˙̄q that guarantee (q, ˙̄q) satisfy the constraints.

In total there are 3n+ d equations in the 3n+ d variables (qk+1, q̇k+1, q̄, ˙̄q).

We emphasise that no assumptions were made on the integrability of the con-

straints. If the set D is a holonomic constraint, then the curves φh will respect

the integrability and remain on the same constraint set as the initial conditions.

The definition of a discrete holonomic system and theorems regarding the discrete

variational principle for holonomic systems are the subject of current research.

The following example illustrates the procedure for generating the discrete con-

strained equations.

Example: Two dimensional simple harmonic oscillator constrained to

the unit circle. The constraint is xẋ+yẏ = 0, so that D = span{ −y e1 +x e2 }.

Let

ψh(t, (q, q̇)) = q + tq̇,

α+(h) =
h

2
,

α−(h) = −h
2
,

φh(t, (q̄, ˙̄q)) = (x̄ cos(γt)− ȳ sin(γt), x̄ sin(γt) + ȳ cos(γt)),

where ( ˙̄x, ˙̄y) is decomposed as
γ

x̄2 + ȳ2
(−ȳ, x̄) +

η

x̄2 + ȳ2
(x̄, ȳ). The discrete La-

grangian is obtained by a midpoint approximation to

1

h

∫ h
2

−h2
L(q + tq̇, q̇) dt
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to give

Ld(q, q̇) =
m

2
(ẋ2 + ẏ2)− k

2
(x2 + y2).

Write δvk = (δxk, δyk, δẋk, δẏk). For the unconstrained system, (δvk, δvk+1) satis-

fies equations (39), (40) and (41) if

δvk = (
h

2
δẋk,

h

2
δẏk, δẋk, δẏk),

δvk+1 = (
h

2
δẋk,

h

2
δẏk,−δẋk,−δẏk).

To satisfy the discrete Lagrange–D’Alembert principle, we also require

D∂+
h (qk q̇k)δvk ∈ D,

which gives

δvk = (
h

2
(yk +

h

2
ẏk),−h

2
(xk +

h

2
ẋk), yk +

h

2
ẏk,−(xk +

h

2
ẋk))δẋk,

δvk+1 = (
h

2
(yk +

h

2
ẏk),−h

2
(xk +

h

2
ẋk),−(yk +

h

2
ẏk), (xk +

h

2
ẋk))δẋk.

There is only one parameter, δẋk, in the variations, hence only one discrete Euler–

Lagrange equation:

dLd(qk, q̇k)δvk + dLd(qk+1, q̇k+1)δvk+1 = 0.

Setting δẋk = 1,

ẋn−1(yn−1+
h

2
ẏn−1)−ẏn−1(xn−1+

h

2
+ẋn−1)−ẋn(yn−1+

h

2
ẏn−1)+ẏn(xn−1+

h

2
+ẋn−1)−
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h

2
xn−1(yn−1 +

h

2
ẏn−1) +

h

2
yn−1(xn−1 +

h

2
+ ẋn−1)−

h

2
xn(yn−1 +

h

2
ẏn−1) +

h

2
(xn−1 +

h

2
+ ẋn−1) = 0.

We also have

xn −
h

2
= xn−1 +

h

2
ẋn−1,

yn −
h

2
= yn−1 +

h

2
ẏn−1,

The constraint equations are

xn +
h

2
ẋn = x̄ cos γ − ȳ sin γ,

yn +
h

2
ẏn = x̄ sin γ + ȳ cos γ,

xn −
h

2
ẋn = x̄ cos γ + ȳ sin γ,

yn −
h

2
ẏn = −x̄ sin γ + ȳ cos γ,

where ( ˙̄x, ˙̄y) =
γ

− ˙̄y2 + ˙̄x2
+

η
˙̄x2 + ˙̄y2

. Figure (5.1) shows the value of the constraint

xẋ + yẏ over 20000 oscillations of the system for the classic fourth order Runge–

Kutta and the discrete system developed in this example. It is clear that the method

developed here preserves the constraint better than the Runge–Kutta.

Note that the constraint in this example was given as xẋ+yẏ = 0 rather than in

its integrated form x2 + y2 − r2 = 0 illustrating the fact that this method respects

holonomic constraints even when they are not explicitly written in their holonomic
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form. ♦

6. Discrete Lagrangian Methods from Explicit Methods

Explicit constant time step methods, such as forward Euler or the classic fourth

order Runge–Kutta can be used as the basis for constructing discrete Lagrangian

integrators. If the system is holonomic, then the resulting integrator is symplectic.

See Patrick and Cuell [10] for the details.

An explicit method is a mapping Rh from R2n to R2n corresponding to the

integration step (qk, q̇k) 7→ (qk+1, q̇k+1). The curves are ψh(t, (q, q̇)) = τQ ◦Rt(q, q̇),

where τQ(q, q̇) = q. This gives the curve as the sequence of configurations in Rn

obtained by increasing the integrator time step from 0 to h. This implies that

α−(t) = 0 and α+(t) = t and therefore ∂−h (q, q̇) = q and ∂+
h (q, q̇) = Rh(q, q̇).

The derivative of ∂−h is

D∂−h (q, q̇)(δq, δq̇) = δq.
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Therefore, the variations (δqk, δq̇k) and (δqk+1, δq̇k+1) must satisfy (see equations (39)

and (40)):

D∂−h (qk, q̇k)(δqk, δq̇k) = δqk = 0,(47)

D∂+
h (qk+1, q̇k+1)(δqk+1, δq̇k+1) = DRh(qk+1, q̇k+1)(δqk+1, δq̇k+1) = 0.(48)

Using equations (47) and (48) in equation (41) gives

(49) DRh(qk, q̇k)(0, δq̇k) = δqk+1.

Substituting equation (49) into equation (48) produces the following n linear equa-

tions in the 2n unknowns (δq̇k, δq̇k+1):

(50) DRh(qk+1, q̇k+1)(DRh(qk, q̇k)(0, δq̇k), δq̇k+1) = 0.

In components, equation (50) is

(51)
∂Rih
∂qj

(qk+1, q̇k+1)
∂Rjh
∂q̇`

(qk, q̇k)δq̇`k +
∂Rih
∂q̇`

(qk+1, q̇k+1)δq̇`k+1 = 0,

for i = 1 . . . n. Equations (50) or (51) will produce an n parameter set of solutions.

If there are no constraints, then the discrete Euler–Lagrange equations (42) are:

(52)
∂Ld
∂q̇`

(qk, q̇k)δq̇`k +
∂Ld
∂qi

(qk+1, q̇k+1)
∂Rih
∂q̇`

(qk, q̇k)δq̇`k +
∂Ld
∂q̇`

δq̇`k+1 = 0,

for each solution (δq̇k, δq̇k+1) of equations (50) or (51).

Without constraints, we need only find n linearly independent solutions of equa-

tions (50) or (51) to generate n independent discrete Euler–Lagrange equations (52).
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Together with equations (43)

(53) qk+1 = Rh(qk, q̇k)

there are n equations in the n unknowns (qk+1, q̇k+1).

Let D be a d dimensional constraint set, as in section 5.1. The discrete Lagrange–

D’Alembert principle requires DRh(qk, q̇k)(δqk, δq̇k) ∈ D (equation (46)). It will be

more convenient to represent the constraints by their annihilators

D◦ = {φ ∈ Rn∗ |φ(X) = 0, X ∈ D }.

D◦ are the vectors that are orthogonal to D. If D has dimension d then D◦ has

dimension n− d. Equation (46) is then

(54) φa(Rh(qk, q̇k))DRh(qk, q̇k)(δqk, δq̇k) = 0,

for a = 1 . . . n− d. Using equations (47) and (49), (54) and (53)

(55) φa(qk+1)δqk+1 = 0,

which is better written as

(56) φa` (qk+1)
∂R`h
∂q̇j

(qk, q̇k)δq̇jk = 0,

for a = 1 . . . n− d.

Equations (56) and (51) are 2n−d linear equations in the 2n variables (δq̇k, δq̇k+1),

leaving only a d parameter set of solutions. The constraint equations (44) and (44)
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are

φ+(q̄, ˙̄q) = Rh(qk+1, q̇k+1),(57)

φ−(q̄, ˙̄q) = qk+1,(58)

where ˙̄q ∈ D. As in section 5.1, the number of equations and variables goes to

3n+ d.

The discrete Euler–Lagrange equations require a set of linearly independent so-

lutions to equations (51). Without constraints, one can safely pick

(59) δq̇ik = 1, δq̇jk = 0, forj 6= i,

for i = 1 . . . n. Then, because ∂Rh
∂q̇ (q, q̇) is invertible by requirement (section 5),

δq̇k+1 can be solved for in equation (51).

With constraints, one has to be careful in picking a parametrisation, since the

constraint equations (56) force relationships between the variables (δq̇k, δq̇k+1). Let

{Xi } be a basis for D. Then equations (50) and (55) can be completed to a set of

2n independent equations by adding

(60) Xi · δq̇k = 1, Xj · δq̇k = 0, for j = 1 . . . d, j 6= i,

for i = 1 . . . d.

7. Routh’s Sphere

7.1. Equations of Motion. The configuration space of a ball is the Lie group

E(3) = R3×SO(3), the space of rigid motions and rotations of R3. Fix a reference
30



s

a
As

α

Figure 5. Configuration of a rolling sphere

sphere in R3 with its centre of mass at the origin. See figure (5). A position of the

ball is given by applying an element (a,A) of E(3) to the reference sphere. This

amounts to translating the reference sphere by a and rotating it by A. For every

configuration of the ball, there is a unique point, s on the reference sphere such

that a+As is the point of contact of the ball with the surface.

The phase space of the rolling ball system is TE(3) = TR3×TSO(3). Following

Cushman [4] and Hermans [7], write the equations of motion on the left trivialisation

E(3)× e(3) = R3×SO(3)×R3× so(3). And further, identify the Lie algebra so(3)

with R3. In short, an element of phase space is (a,A, b, ω), where a is the position

of the centre of mass, A is the orientation represented by rotating the reference

sphere by A and b = A−1ȧ. ω = A−1Ȧ is the angular velocity of the rolling sphere

with respect to the fixed axis of the reference sphere.

The Lagrangian on E(3)× e(3) is

L(a,A, b, ω) =
1

2
Iω · ω +

1

2
mb · b−mga · e3,

where I = diag(I1, I1, I3) is the moment of inertia tensor of the sphere, m is the

mass of the sphere and g is the acceleration due to gravity. The e3 axis is lined up

with the axis of symmetry in the reference sphere.
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The rolling constraint is enforced by requiring the instantaneous axis of rotation

to be through the contact point and parallel to ω. With respect to the reference

sphere, this is

b = s× ω.

The force of constraint on R3 × so(3) is F = (λ, s × λ). Adding this constraint

force to the unconstrained Euler equations (see Arnold [1]) and using the Lagrange

multiplier λ = (λ1, λ2, λ3), the equations of motion are

ȧ = Ab,

Ȧ = Aω,

mḃ = mb× ω −mgA−1e3 + λ,(61)

Iω̇ = Iω × ω + s× λ.(62)

Eliminating λ and using the constraint, equations (61) and (62) are replaced by

ḃ =
d

dt
(s× ω),(63)

Iω̇ +m(s× ω̇)× s+m(ṡ× ω)× s = Iω × ω +m(s · ω)ω −mgA−1e3 × s,(64)

which are implicitly defined ordinary differential equations.

Representing an element of SO(3) by a 3 × 3 orthogonal matrix requires six

constraints to enforce the orthonormality of the columns. It is better to represent

A by a unit quaternion since it is an element of R4 with only the one constraint

enforcing unit length. See Bates and Cushman [3] for a more detailed discussion

on this representation.
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If A is a rotation about an axis (q1, q2, q3) through the angle θ, the equivalent

quaternion is

q =

(
cos(

θ

2
),

sin( θ2 )

‖(q1, q2, q3)‖ (q1, q2, q3)

)

Let x = (x1, x2, x3) be in R3 and write x in R4 as x = (0, x1, x2, x3). Write

q = (q0, q1, q2, q3) Using quaternion multiplication, define Rq by

Rqx = qxq−1.

The result of this operation is to rotate x by the angle θ = 2 cos−1(q0) about the

axis (q1, q2, q3).

If ω = (ω1, ω2, ω3) is the angular velocity, then the corresponding quaternion in

R4 is γ = 2(0, ω1, ω2, ω3). An arbitrary vector tangent to the unit quaternions at

the point q is q̇ = (q̇0, q̇1, q̇2, q̇3) = qγ for some γ = (0, γ1, γ2, γ3) with base point

(1, 0, 0, 0).

Using quaternions, the configuration space for the sphere is R3 × S3 where S3

is the three–sphere in R4. With quaternion multiplication S3 is a Lie group with

identity element (1, 0, 0, 0). Phase space is TR3 × TS3 = { (a, q, ȧ, q̇) }, where the

coordinates have been arranged so that the configuration coordinates are the first

2n components and the velocity coordinates are the last 2n components. The

Lagrangian is

(65) L(a, q, ȧ, q̇) = 2I(q−1q̇, q−1q̇) +
m

2
ȧ · q̇ −mga · e3,

with the constraint

(66) q0q̇0 + q1q̇1 + q2q̇2 + q3q̇3 = 0.
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The rolling constraint is

(67) ȧ = − d

dt
(Rq)s.

To find a formula for s, let a configuration (a, q) be in R3 × R4. Let n(s) be

the outward unit normal to the reference sphere at the point s. Restricting to flat

surfaces only, s must satisfy An(s) = −e3. For a sphere of unit radius and centre

of mass a distance α from the geometric centre (see figure 5), s as a function of q is

s = (s1, s2, s3) =
1

‖q‖2 ( 2(q0q2 − q1q3) , −2(q0q1 + q2q3) , q2
1 + q2

2 − q2
0 − q2

3 + α ).

The constraint equation (67) is computed by expanding the time derivative.

ȧ = −q̇sq−1 + qs(q−1)̇ = q̇sq−1 − qsq−1q̇q−1.

Rearranging, the constraint can be written as

q−1q̇s− sq−1q̇ + q−1ȧq = 0.

The three components of the constraint are

(68)
2

‖q‖2
q̇0(s2q3 − s3q2)−

2

‖q‖2
q̇1(s2q2 + s3q3) +

2

‖q‖2
q̇2(s3q0 + s2q1) +

2

‖q‖2
q̇3(s3q1 − s2q0)+

1

‖q‖4
ȧ1(q

2
1 + q

2
0 − q

2
3 − q

2
2) +

2

‖q‖4
ȧ2(q1q2 + q0q3) +

2

‖q‖4
ȧ3(q1q3 − q0q2) = 0,

(69)
2

‖q‖2
q̇0(s3q1 − s1q3) +

2

‖q‖2
q̇1(s1q2 − s3q0)−

2

‖q‖2
q̇2(s1q1 + s3q3) +

2

‖q‖2
q̇3(s1q0 + s3q2)+

2

‖q‖4
ȧ1(q1q2 − q0q3) +

1

‖q‖4
ȧ2(q

2
2 + q

2
0 − q

2
1 − q

2
3) +

2

‖q‖4
ȧ3(q2q3 + q0q1) = 0,
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(70)
2

‖q‖2
q̇0(s1q2 − s2q1) +

2

‖q‖2
q̇1(s2q0 + s1q3) +

2

‖q‖2
q̇2(s2q3 − s1q0)−

2

‖q‖2
q̇3(s2q2 + s1q1)+

2

‖q‖4
ȧ1(q1q3 + q0q2) +

2

‖q‖4
ȧ2(q2q3 − q0q1) +

1

‖q‖4
ȧ3(q

2
3 + q

2
0 − q

2
2 − q

2
1) = 0.

7.2. Numerical Simulation. For a first numerical simulation, take the curves

ψh(a, q, ȧ, q̇) = (a + tȧ, q + tq̇, α−(t) = 0, α+(t) = t, so that the integrator will

be derived from the explicit Euler method, as in section 6. Take the discrete

Lagrangian to be the left endpoint approximation of

1

h

∫ h

0

L(a+ tȧ, q + tq̇, ȧ, q̇) dt,

so that Ld(a, q, ȧ, q̇) = L(a, q, ȧ, q̇), where L is given in equation (65). Recall from

section 4 that this generates the symplectic Euler method.

The constraint, D, is given by the vectors (ȧ, q̇) that satisfy the constraint equa-

tions (66), (68), (69) and (70).

Write the exponential map from so(4) to SO(4) by expSO(4). This will distin-

guish it from the exponential map exp from so(3) to SO(3) which is also needed.

Let (0, γ1, γ2, γ3) be a vector tangent to S3 at (1, 0, 0, 0). Then let γ ∈ so(3) be

(71) γ =




0 −γ1 −γ2 −γ3

γ1 0 γ3 −γ2

γ2 −γ3 0 γ1

γ3 γ2 −γ1 0




.

Also, let ω = 2(γ1, γ2, γ3) ∈ so(3). Then, expSO(4)(tγ) generates a rotation of the

configuration which corresponds to a rotation exp(tω) of the sphere. The discretized
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constraints are:

(72) φh(a, q) = (a+Rqs−R + exp(hAω)(R−Rqs) + hR×Aω, expSO(4)(hγ)q),

where R = (0, 0,−1). Let r = ‖γ‖. The formulae for the exponential maps are,

(73) expSO(4)(tγ) =




cos(tr) −γ1

r sin(tr) −γ2

r sin(tr) −γ3

r sin(tr)

γ1

r sin(tr) cos(tr) γ3

r sin(tr) −γ2

r sin(tr)

γ2

r sin(tr) −γ3

r sin(tr) cos(tr) γ1

r sin(tr)

γ3

r sin(tr) γ2

r sin(tr) −γ1

r sin(tr) cos(tr)




,

(74) exp(tAω) = I +
sin(2tr)

2tr
tAω +

1− cos(2tr)

4t2r2
(tAω)2.

The idea behind using equations 72, 73 and 74 is that γ generates a rotation of

q ∈ S3. There is a corresponding rotation generated by Aω of the centre of mass

about the geometric centre of the sphere. There must also be a rigid translation in

the direction R× Aω by an amount equal to the the arc length traced out by the

contact point on the sphere.

Note that Aω corresponds to the angular velocity in the space frame, whereas

ω is the angular velocity with respect to a coordinate system fixed in the reference

body.

7.3. Numerical Results. Here we present the results of some simulations.

In the first case, α = 0 and I3 = I2 = I1 = 1 corresponding to a uniform sphere.

The initial conditions are an angular velocity in the e2 direction to correspond to

rolling along the e1 axis.
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Figure 6 shows a linear drift in the energy of very small slope. This is not

typical behaviour for a variational integrator and may be a result of our constraint

discretization. Further experiments need to be conducted on this.
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Figure 7 shows that the angular velocity in the e2 direction also has a small

linear drift. Note that the initial conditions are given as (γ1, γ2, γ3) = (0, .5, 0).

This produces an angular velocity of ω = (0, 1, 0) in the continuous system, and

slightly less than that in the simulated system due to the discretized constraints.

The plot in figure 8 is of q0 and shows that it remains nicely bounded, as should

be expected.

Now let α = 0.2 and I3 = 0.8. The initial conditions for these plots are

(a1, a2, a3) = (−0.199, 0, 0) and ω = (0, 0, 0). This produces a rocking motion

along the e1 axis and a corresponding oscillation in ω2.

The plot in figure 9 shows the bounded energy behaviour we expect. Note that

only every tenth point is plotted.
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Figure 10 shows the a3 component of the centre of mass. Again, only every tenth

data point is shown.

Finally, figure 11 shows the oscillations of the ω2 component of angular velocity.
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8. Conclusions and Further Work

In this project, we introduced a new technique that has been developed for

generating variational integrators for constrained systems. We showed, through

examples, that there is good potential for this method to produce accurate long

time integrators.
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There is still considerable work to do on this project.

Discretization. Producing the discretized constraints has proven to be the great-

est difficulty, since it involves finding the mapping φh, which is typically the flow

of a vector field. Techniques need to be developed to incorporate a very accurate

differential equation solver into the scheme to compute φh at every time step.

Rolling Rigid Bodies. Rolling rigid bodies are proving to be a good test case,

as they incorporate technical difficulties (i.e. nontrivial configuration space and

implicitly defined equations of motion) while still providing examples for which

analytic solutions and qualitative behaviour are known.

Routh’s Sphere. It is known that there are motions of Routh’s sphere that

result in the centre of mass moving asymptotically to a position directly above the

geometric centre. The integrator should be tested on these solutions.

High Order Integrators. The ability to generate high order variational integra-

tors from Lagrangian integrators may be one of the most beneficial aspects of this
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technique. Examples need to be written and tested against other high order meth-

ods.

Numerical Analysis. A study of the order and stability properties of various

methods developed by this technique needs to be done.

Geometry. A holonomically constrained integrator can be written as a lower

dimensional system by adapting the curves ψh to the constraint. This assertion

still needs to be proven and its utility tested.

Software. Good, general purpose software needs to be written. The current code

is adequate for small simple systems. Compound rigid bodies, such as the mobile

robot with three wheels, may have many repeated components (i.e. three ball

wheels, nine rollers) which suggests that a more strongly object oriented approach

should be considered.
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