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Abstract

The tremendous expansion of the Internet has made efficient searching and infor-
mation retrieval an area of growing importance. Traditional search methods have
drawbacks that may result in documents being returned that are not relevant or in
documents that are relevant being overlooked. Latent Semantic Indexing (LSI) is an
alternative method of information retrieval that attempts to avoid these problems.
This method involves creating a term-by-document matrix to represent the docu-
ments and their keywords. Queries are projected into this matrix using the matrix
factorization method known as the singular value decomposition (SVD). The SVD
provides a means of data compression, allowing reduction of the term space while
preserving the most important characteristics of the original matrix. Because calcu-
lating the SVD of a matrix is an expensive process that needs to be repeated often
in LSI, speeding up this SVD calculation is of particular importance.

Calculating the SVD of a matrix involves two main steps: first the matrix is bidiag-
onalized, and then the SVD is formed from this bidiagonalized matrix. Traditionally,
the SVD calculation is performed using the Golub-Kahan algorithm. Unfortunately,
for a bidiagonal m x n matrix, this algorithm takes O(n?) time [8], making it infeasible
for the extremely large term-by-document matrices used in LSI. This thesis presents

a divide-and-conquer approach to calculating the SVD that is asymptotically faster

viii



than the Golub-Kahan method, resulting in a significant improvement in the cost of
computation. Results are presented comparing the CPU times of the two methods,

both implemented and tested in the Matlab problem solving environment.
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Chapter 1

Introduction

Why is the sky blue?” Where do butterflies go when it rains? What is the speed
of light? Finding the answers to questions such as these would traditionally have
involved consulting books or experts; however, in today’s fast-paced and technology-
oriented society, the most common response to a quest for information is to head
for the nearest computer, connect to the Internet, and conduct a search. Online
searching has become so much a part of North American culture that Google, the
name of a popular search engine, is now often used as a verb [16]. Since the inception
of the World Wide Web in 1991, the number of existing web pages has increased
dramatically from a few thousand to a few billion, with expansion continuing on a
daily basis. Although not all web sites contain useful or even accurate information,
given the enormous size of the Internet, it is a fairly safe assumption that information
pertaining to the subject at hand is available, even though retrieving it may be

extremely challenging.



1.1 Information Retrieval

This information retrieval (IR) challenge, much like trying to find the proverbial
needle in a haystack, is undertaken by search engines. Search engines build databases,
in which available documents are indexed. Then, when a query is made, the database
indices can be checked and the most relevant documents returned. Two methods for
executing this check are known as keyword searching and content searching. The most
common approach is keyword searching, also known as literal searching. It literally
matches terms in the query with terms specified, either by the author of a document
or by the search engine, as keywords. This sounds like a logical idea, but it does have
drawbacks. It is not unusual for a word to have more than one meaning, and this
trait, known as polysemy, makes it likely that a keyword search will return irrelevant
documents [1, 2, 4]. For example, if a query contains the word mouse, it may refer to
a four-footed furry rodent or to a computer pointing device, and so the documents
returned are likely to be a mixture of those about rodents and those about computer
hardware. This is known as precision failure because the results are not precisely on
topic. Whereas precision failure returns irrelevant documents, another type of error,
known as recall failure, fails to return documents that are relevant. Documents may
be about the correct subject, but if they do not contain the exact keywords used in
the original query, they will be overlooked in keyword searching [2, 4, 19]. Content
searching attempts to avoid recall and precision failure by classifying documents based
on a contextual understanding, and returning those that are in the same category as
the search query, rather than those that have matching keywords. The problem is
that whereas a person can easily determine the focus of a document, it is much more

difficult for a computer to do so [10]. Although human experts perform document



classification for some search directories, the vast number of documents now available

on the Internet makes this increasingly infeasible [1].

1.2 Latent Semantic Indexing

Latent Semantic Indexing (LSI) is an alternative method of information retrieval that
attempts to avoid these problems. LSI uses a mathematical approach to examine the
document collection as a whole and determines which documents contain many of the
same words. The more words documents have in common, the more closely related
they are considered to be. When a query is made, documents containing the keywords
are returned, but so are those that are closely related to these documents. This allows
the retrieval of documents that do not contain all or even any of the keywords given
in the query [1, 19].

LSI involves creating a term-by-document matriz, in which there is a vector for
each document, with as many entries as there are semantically significant words, or
content words, in the documents. This is known as a vector space model [1, 2, 14].
As with other IR methods, some initial preparation is required. First, the texts are
stripped down by removing formatting, punctuation, and words with little semantic
meaning such as the and ¢s. The words that are left are the content words. Next,
common word endings are removed in a process known as stemming, which produces
a more concise list of root words [1, 14]. Finally, these lists of root words from each
document, are combined into a single list of terms and used to form the term-by-
document matrix.

The term-by-document matrix is essentially a table of numbers with, as already

noted, a column (vector) for each document, and a row for each term in the combined



list of content root words. This matrix will then be of size t x d, where ¢ denotes
the number of terms, and d denotes the number of documents. We will refer to this
matrix as A, and to each entry as a;;, where 1 <7 <t and 1 < j <d. Each entry
indicates the presence or absence of a particular term in a particular document. If
the term is not present, a 0 is entered in the corresponding matrix position. If the
term is contained in a document, a positive number is entered, based on the weight
assigned to that particular word in that particular document. Without weighting, a
value of 1 can be entered to simply indicate the presence of the word in the document.
In practice however, two forms of weighting are commonly used. The first is known
as local weighting, in which the number of times the word appears in the document
is used to calculate the weight, with frequently appearing words receiving a higher
weight to indicate their importance [19]. The second type of weighting is global
weighting [2]. Here the frequency of a word across the entire body of documents
is considered. If a word appears in relatively few documents it is considered to be
more interesting than a word that appears in many documents, and so it will receive
a correspondingly higher weight [19]. Some documents are much larger than others
and the size of the document affects the frequency of a term. For this reason, the
weights are normalized so that words in smaller documents receive higher weights
than those in larger documents with many content words [19].

The following example steps through the process of forming a very small term-by-

document matrix.



Example 1.1:

The database consists of a dozen documents that are so short, they each

have only one sentence. The terms to be considered content words are

underlined:

dli

dgi

d4§

d53

dG:

d73

dgi

Not every mouse is a rodent; not every rodent is a mouse.

If you move the computer’s mouse, it will move the cursor on the

computer screel.

: A mouse in your house is better than a rat in your hat.

The rodent gnawed through the screen to get into the house.

A computer pointing device is helpful when using a graphics program.

The computer was difficult to use when the mouse malfunctioned.

To catch an annoying rat, just use a rodent trap.

This computer program requires the use of a computer pointing

device.

Whenever I move the mouse, I see squiggly graphics on the computer

screen.



d1o: Although the story The Cat in the Hat is popular, I prefer The Mouse

in the House.

dy1: If you will give me a new mouse, I will move my computer to your

house.

di2: When a rodent is as big as a rat, it is time to set a trap.

A list of terms is formed from the document collection by stripping out
everything but the underlined content words, and then stemming the word

endings and discarding any duplicate terms:

t1: mouse te: house tq;: graphic
ty: rodent t7: rat t12: program
ty: compute tg: hat t13: trap

t4: cursor to: point  ty4: story
t5: screen tig:device ti5: cat

These data allow the formation of the term-by-document matrix. For
simplicity, global weighting is ignored, and the local weight function is
defined as the frequency of a term in a document. The documents are

similar in size, so normalization of the weights is not necessary.



Terms |dy do ds dy ds ds dy ds dy dyg din dio
mouse (2 1 1 O O 1 O 0 1 1 1 0
rodent |2 0 0 1 O O 1 0 0 O 0 1
compute | 0 2 0 0 1 1 0 2 1 0 1 0
cursor |0 1 O O O O O O O O 0 0
screen o 1 0 1 O O O 0 1 O 0 0
house o 0 1 1 0 O O 0 0 1 1 0
rat o o0 1 0 O O 1 0 0 O 0 1
hat o 0 1 0 O O 0 0 0 1 0 0
point o 0 o 0o 1 0 0 1 0 O 0 0
device |0 0O O O 1 O O 1 0 O 0 0
graphic |0 0 O O 1 0 O 0O 1 O 0 O
program | O 0O O O 1 O O 1 0 O 0 0
trap o 0 0 0 0 O 1T 0 0 O 0 1
story o 0 o 0 0 o 0 o0 o0 1 0 0
cat o 0 0 0 O O 0 o0 0 1 0 0

Table 1.1: Term-by-Document Matrix A of size 15 x 12

A query is represented by a vector formed using a similar process. Suppose the
terms computer, pointing, and device are the only terms to be used in a query.
After stripping out the insignificant words and stemming the remaining terms, a
t X 1 vector is created, where t is, as before, the number of terms in the term-
by-document matrix. If a strictly binary approach is used, an entry of 1 is made
when the corresponding term is present in the query, and an entry of 0 otherwise.
Using the same terms as for the term-by-document matrix thus forms the vector

q=(0,0,1,0,0,0,0,0,1,1,0,0,0,0,0)T.



The process of searching involves calculating the distances between the query and
document vectors; the closer together the vectors are, the more closely related they
are considered to be [2]. Each query can be thought of as a probe into the document
vector space [1]. A query is projected into the term-by-document matrix using the

matrix factorization method known as the singular value decomposition.

1.3 Singular Value Decomposition Overview

The singular value decomposition (SVD) is a matrix decomposition whose compu-
tation has many applications [17]. It is popular for a number of reasons, including
the fact that it can be computed in a stable manner [15]. This means that small
perturbations in the data, such as those caused by rounding errors, cause only small
perturbations in the resulting factorization. The SVD also gives optimal low-rank
approximations to the original matrix, providing a means of data compression.
Because of the tremendous size of modern databases, a term-by-document matrix
can potentially be very large, with hundreds of thousands, or even millions, of entries.
The SVD is a mathematical method of reducing the size of these large matrices, while
maintaining the relationship among the vectors [2]. We can think of the term-by-
document matrix as representing a t-dimensional space, with ¢-dimensional document
vectors. Each vector contains the coordinates of that document’s location in the t-
dimensional space. The vectors of documents with many terms in common will be
found close together, whereas the vectors of documents with relatively few terms

in common will be located far apart. The SVD projects these vectors into a much



smaller subspace. This results in the loss of some information, but in this case, this is
a positive consequence. Looking at the example above, it is easy to see that the matrix
is composed mainly of zeroes, since each document tends to contain relatively few of
the terms. This is generally the case, with an average 99% of the entries being zero
[4]. Such a matrix is referred to as being sparse. The SVD can be used to decompose
the sparse matrix, discard the information that is least important, and return a
much smaller approximation that represents a condensing of the data contained in
the original matrix. The data in the condensed, or compressed, matrix contain the
latent patterns that indicate the presence of semantically similar terms, whereas the
noise in the original matrix, caused by factors such as polysemy and synonymy, has
been largely damped or removed [2, 13, 19]. This SVD data compression process is
extremely useful, but traditional methods of calculating the SVD are very expensive
in terms of computational cost. In fact, most of the processing time in LSI is spent
performing this SVD calculation [3, 4]. This thesis describes a recent approach to

calculating the SVD that is significantly faster than traditional methods.

1.4 Singular Value Decomposition in More Detalil

Given a matrix A € R™*" its SVD is written as

A =UzV", (1.1)

where U € RV € ™" and ¥ € R™*". U and V are orthogonal matrices.



An orthogonal matrix is a square matrix that has orthonormal columns. Geomet-
rically, this means that the columns are mutually perpendicular, and that each has
an Euclidean length of one. The matrix ¥ € R™*™ has non-zero entries only on
the diagonal. These diagonal entries, denoted o; for j = 1,2, ..., min(m, n), are the
singular values of matrix A. The left singular vectors of A are the columns of U and
the right singular vectors are the columns of V. Every matrix has a singular value
decomposition, and the singular values {o;} are always uniquely determined [17].
The number of nonzero singular values of a matrix is known as the rank, r, of that
matrix, and corresponds with the number of linearly independent rows (or columns).

An alternative way to represent the SVD is as the sum of r rank-one matrices

,

— . . T

A= E oju;v;,
Jj=1

where u; and v; are the jth columns of matrices U and V, respectively. This represen-
tation of the SVD allows the formation of lower-rank approximations of A. Replacing

r in this equation by any v with 0 < v < r gives

v

T

A=~ E O'j'llej.
i=1

Taking the first v columns of U and V and the leading v X v submatrix of X, we

obtain the optimal rank-r approximation of A, which can be expressed as

A, =032, VI (1.2)

This approximation is optimal in the sense that there exists no rank-r approximation

that is a better approximation to the original matrix A [4, 13, 17]. For example, in

10



the 2-norm

A=Al = min [A—=Bl; =0y
rank(B)<v
Be%mxn

As described above, the approximation can be used to reduce the dimension of the
term-by-document matrix, while eliciting the underlying structure of the data. How
many terms to keep in the reduced term-by-document matrix when n is very large
is still open to study and debate, but experiments indicate that values of v between
100 and 300 give the best results [4]. This tremendous dimensional reduction, given
the potentially huge size of the term-by-document matrix, demonstrates the power of
the SVD as a method of data compression.

A simple example will illustrate the formation of the SVD.

Example 1.2:
Let A be the 15 x 12 term-by-document matrix from Example 1.1, and for con-

venience in plotting, let ¥ = 2. Recalling (1.1) and (1.2), we write

A; = U,%, V3,

where A, € R19%12 U, € R1%%2 3, € R2*2 and VI € R2¥12, Performing this calcu-
lation in Matlab gives the following results (where only 4 decimal places of accuracy

are displayed).

11



(—0.5615 —0.4186
—0.2162 —0.5002
—0.6609 0.4643
—0.1089  0.0449
—0.2175 —0.0025
~0.1922 —0.2423

—0.2764 0.3713
—0.0776 —0.2266
—0.2713  0.0130

—0.0917 —0.1658 |,V ;
—0.0723 —0.2474
—0.1484 0.2397

—0.3922  0.4697
—0.1484 0.2397

—0.3505 0.0463
—0.1391 0.1190

—0.2081 —0.2814
—0.1484 0.2397

—0.3140 —0.0560
—0.0321 —-0.1410

—0.0462 —0.0802 \—0-0723 —0.2474

—0.0462 —0.0802

op 0 4.5053 0
22 == = .
0 o 0 3.5081

U, contains term vectors, and V5 contains document vectors. The terms and

[ —0.3452 —0.5238 \
—0.4904  0.1575
—0.2049  —0.3003
~0.1389 —0.2124

U,

documents can be plotted on a two-dimensional graph with term coordinates (xy,, y,)

and document coordinates (z4;,¥s,), where

and

12



t3 ds,
15 .
ds,
" 112 |
g 110
a2
05 t1, &
do, t4,
of ® 8 -
di1
’ 115 t14
_05}F i t13, |
d4
6 " g
. d10 d7
d3
t1
-15F : .
2
di, t-
_2 I I I I I
=3 -25 -2 -15 -1 -0.5 0

Figure 1.1: Two-Dimensional Plot of 15 Terms and 12 Documents

t1:

to:

t3:

ty4:

ts5:

Note that terms such as point (tq), device (t19), and program (t;2) map to the same
point because they always occur together. Documents with few terms tend to map
approximately equidistant from each term. Document dg, for example, contains only
terms t3 and t¢1; on this plot it is found about an equal distance from each of these

terms. Documents that have terms in common, such as d; and di2, tend to be found

close together. This automatic clustering of related terms and related documents is

mouse
rodent
compute
cursor

screen

ts: house
t7: rat
ts: hat
ty: point

t10:device

13

t11:
t12:
t13:
t14:

t151

graphic
program
trap
story

cat



one of the great advantages of using LSI and low-rank approximations [1].

Recall, from Example 1.1, that a search using the terms computer, pointing, and

device results in the query vector q = (0,0,1,0,0,0,0,0,1,1,0,0,0,0,0)”. To project

this query into a two-dimensional subspace, it is approximated using the formula [3]

This gives

L

—

o O O o O = =, O O O o o+~ o ©

~

( —0.5615

—0.2162
—0.6609
—0.1089
—0.2175
—0.1922
—0.0776
—0.0917
—0.1484
—0.1484
—0.1391
—0.1484
—0.0321
—0.0462
—0.0462

a=q"Ux;"

—0.4186
—0.5002
0.4643
0.0449
—0.0025
—0.2423
—0.2266
—0.1658
0.2397
0.2397
0.1190
0.2397
—0.1410
—0.0802

—0.0802 /

(

- ( —0.2126 0.2690 ) .

0.2220 0
0 0.2851

This compressed query vector is compared with the document vectors contained

in V5, and those documents that are most closely related are considered relevant.

One method of determining document relevancy is to measure the cosine of the angle

14



between the query vector and each of the document vectors. If the cosine of the angle
is greater than a chosen threshold, then the document is returned as relevant [3].
The two-dimensional query vector is plotted in Figure 1.2. The shaded portion
of the figure represents the area of relevance defined by a cosine threshold of 0.87.
Because cos™! 0.87 ~ 30°, this is the area spanning approximately 30° on either side

of the query vector.

2
|3 dé,
15} .
ds,
1 4
t12,
g 10
05} = t11 J
< Query
dg, t4,
ml 6, 5
di1
5, yy
05} t8, "
d4
6, - Yoan
At d10, d7 J
o3
t1
15F - -
" t2
_2 L L L L L
-3 25 E -1.5 -1 05 0

Figure 1.2: Two-Dimensional Plot Using a Cosine Threshold of 0.87

At this threshold, the documents ds and dg, which contain all the query terms,
are returned. Using a lower cosine value returns more documents considered to be

relevant.

15



Figure 1.3 uses a cosine threshold of 0.53 to select documents. As before, the
shaded portion of the figure indicates the area of relevance: the area spanning ap-

proximately 58° on either side of the query vector.

2
| d8,
15F i
d5.
1 a P
t12
g’ 110
d2,
o5k t11, -
Query
dg. t4.
o 6. 5
o, t15. 114
05F t8_ t13- -
d4
t6, - o
1k d10, d7 |
d3
t1
15} : -
a. t2
_2 L L L L L
-3 25 -2 -1.5 -1 -0.5 0

Figure 1.3: Two-Dimensional Plot Using a Cosine Threshold of 0.53

In this example, all the documents relevant to the query are returned, including
those that do not contain the query terms pointing and device. No irrelevant doc-
uments are returned. The clustering of documents provides a means to distinguish
between the use of the term mouse as a computer hardware component, and the use
of the term mouse as a rodent, thus allowing the selection of the appropriate docu-
ments. This is an illustration of the ability of the vector space model to address the

problems of recall and precision error.

16



1.5 Statement of Problem and Goals

The calculation of the SVD in IR vector space models such as LSI constitutes the
greatest computational expense incurred by these models [3, 4]. Calculating the SVD
of a matrix typically involves two main steps: first the matrix is bidiagonalized, and
then the SVD is formed from this bidiagonal matrix. Note that a bidiagonal matrix
has nonzero entries only on the diagonal and either on the first subdiagonal, in the
case of a lower bidiagonal matrix, or on the first superdiagonal, in the case of an upper
bidiagonal matrix. As already illustrated, the term-by-document matrices formed in
LST are sparse; such matrices can be efficiently bidiagonalized by using the Lanczos
algorithm [7, 18], which takes advantage of the sparsity. The second step in the
SVD calculation is traditionally performed using the Golub-Kahan algorithm [6, 7].
Unfortunately this method of computing the SVD of a size m x n bidiagonal matrix
takes O(n®) time when both the singular values and the singular vectors are required
[8]. This thesis presents an alternative method of calculating the SVD, known as the
divide-and-conquer SVD, which is computationally more efficient.

The following chapter gives an overview of the Lanczos and Golub-Kahan algo-
rithms. Chapter 3 provides a detailed description of a divide-and-conquer algorithm
for the SVD, including several deflation techniques, proposed by Gu and Eisenstat
[8]. Chapter 4 gives an evaluation of the divide-and-conquer SVD implementation,

while Chapter 5 discusses conclusions and future work.
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Chapter 2

Lanczos Bidiagonalization and

Golub-Kahan SVD Algorithms

The efficiency of an algorithm involving matrix computations is affected both by the
amount of storage needed and by the number of arithmetic operations performed [7].
Some matrix structures, such as that of the bidiagonal matrix, provide sufficient sav-
ings in both storage and arithmetic operations that the cost of performing a change
in structure is worthwhile. Thus, the first step in calculating the SVD of a matrix
is generally that of bidiagonalization [18], and this is true of the divide-and-conquer
approach to be described in this thesis. The divide-and-conquer SVD implementation
to be discussed in Chapter 3 uses the Lanczos algorithm [6, 7] for matrix bidiago-
nalization, which produces an approximate bidiagonal decomposition of the original
matrix. An overview of the algorithm is given in the first section of this chapter.
Once a matrix has been bidiagonalized, the traditional method of calculating the
SVD is to employ the Golub-Kahan algorithm [6, 7]. As already noted, the running
time of this algorithm for an m x n bidiagonal matrix is O(n®) when both the singular

values and the singular vectors are required [8]. This is efficient when n is small;

18



therefore the divide-and-conquer implementation to be discussed uses this method
at the base case when computing the SVD of small matrices. An overview of the

algorithm is presented in the second section of this chapter.

2.1 Lanczos Bidiagonalization Algorithm

The Lanczos bidiagonalization algorithm was introduced by Golub and Kahan [6],
but it is based on the Lanczos algorithm for tridiagonalizing Hermitian matrices
[6, 7, 12]. The Lanczos bidiagonalization algorithm produces a matrix that is an
bidiagonal approximation of the original matrix. The result is an approximation
rather than an exact transformation because the Lanczos algorithm is unstable in
the presence of rounding errors [6, 12], resulting in a loss of orthogonality of the
vectors it generates (i.e., matrices U and V in (2.1) below). In spite of this problem,
it maintains a good approximation of the large singular values of A, although the
approximation of the smaller singular values is less accurate [7]. For applications
such as LSI that use only the v largest singular values for the rank-v approximation
of A, the Lanczos algorithm is an acceptable bidiagonalization method. This is
especially true because, as illustrated in Chapter 1, the term-by-document matrices
generated by LSI are sparse, and the Lanczos algorithm is an efficient method for
bidiagonalizing large sparse matrices [12]. The algorithm preserves the sparsity of
the matrix [7], providing advantages in storage space and computation time [12].

In theory, the Lanczos bidiagonalization algorithm computes orthogonal matrices

U € ™" and V € R**" such that
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(Ch P \

az o
UTAV=B= : (2.1)

Op—1 /Bn—l

\ o,

In practice, as already noted, rounding errors due to finite precision cause the columns

of U and V to lose orthogonality [6, 12], giving

UTAV = BLanczos ~ B.

The algorithm can be summarized as follows.

Algorithm 2.1 LANCZOS BIDIAGONALIZATION ALGORITHM

1:
2:
3:
4:
5:
6
7
8
9

10:
11:
12:

choose v; € R" such that [[vi]|s =1
set pp=vi €R"and ug =0 € R™
set k=0and Gy =1

Vi1 = Pk/ﬁk
k=k+1
r, = Avy — By 1ug 4
o = [|rgl2
u; = rk/ak
pr = ATu;, — apvy
Br = ||P1c||2

end while

Note that this algorithm assumes matrix A € R™*", where m > n. If this is not

the case, A can simply be transposed before the bidiagonalization takes place. Like-

wise, the upper bidiagonal matrix produced by the procedure can easily be transposed

to a lower bidiagonal matrix if necessary.

20



2.2 Golub-Kahan SVD Algorithm

The Golub-Kahan algorithm was introduced in 1965 [6] and soon became the standard
method for computing the SVD of a matrix. To facilitate the computation of the
SVD, the original matrix A is typically bidiagonalized to B [6]. In this case, B
must be square, upper bidiagonal, and have no zero entries on either the diagonal or
the first super diagonal. The algorithm then calculates the SVD of B using Givens
transformations, also known as Givens rotations [18], on the left and right of B to
zero out, or transform to zero, the elements on the super diagonal of the matrix [7].
This results in the diagonal matrix 3, containing the singular values of A.

A Givens rotation is a multiplication by an orthogonal matrix. For a 2 X 2 matrix,

it takes the form

where ¢? + s? = 1. The structure of a Givens rotation of arbitrary size (n X n) to be

applied from the left is as follows:
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1
c O 0 s
0 1 0
G = , (2.2)
0 10
-s 0 0 ¢

1

where By, ; is the element to be zeroed out, c¢ is in positions G;; and Gy, s is in
position G;, and —s is in position Gy ;, for ¢ # k and 0 < ¢,k < n.
For an arbitrary vector v in which element vy is to be zeroed out, the values of ¢

and s are determined using the equations

(%
c= 2 2
v; + Ui

Vg
5= 2 2
v; + v,
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where ¢ # k and 0 < 4, k < n.

The Givens rotations acting on B from the left and right can be expressed as

UT'BV,

where U and V are orthogonal matrices composed of the products of the Givens

rotations U} and V; such that

u'=vf Ul .,  .ulut

and
V= V1V2 e angvnfl.
This gives
> =U'BV,
where
B =UxVT

is the SVD of B.

This is a rather simplistic overview of the Golub-Kahan SVD algorithm. Detailed
descriptions are given by Golub and Kahan [6] and by Golub and Van Loan [7]. As
previously noted, this algorithm takes O(n?®) time to compute the SVD of an m x n
bidiagonal matrix [8]. This becomes increasingly expensive as n gets large. The
divide-and-conquer algorithm described in Chapter 3 can be optimized to compute

the singular values in O(nlog, n) time and the singular values and singular vectors
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in O(n?) [8]. This is of particular importance to applications such as LSI, in which

the SVD is calculated many times, and for matrices where n is very large.
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Chapter 3

Divide-and-Conquer SVD

Algorithm

In the world of computer science, many algorithms use the divide-and-conquer design
paradigm [5]. This method works recursively, breaking down the original problem
into related subproblems, and then applying the algorithm to each of the subprob-
lems until a trivial base case is reached. The subproblems are solved independently,
and then their solutions are combined to produce a solution to the original problem.
An advantage of this paradigm is a reduction in the complexity of the algorithm in
comparison with non-recursive methods. Consider a problem of size n that takes
O(n?) time using a traditional method. Combining two solutions of size % takes O(n)
time, so the problem can be solved in O(nlog,n) time using a divide-and-conquer
approach. Although divide-and-conquer may be slower than traditional methods for
small data sets, due to the extra overhead from recursion, solving such small sub-
problems using a traditional algorithm reduces this liability. This chapter describes

a divide-and-conquer SVD algorithm proposed by Gu and Eisenstat [8].

25



3.1 Dividing into Subproblems

Suppose there is a matrix A € R™*" for which the SVD must be computed. Gu and
Eisenstat’s divide-and-conquer SVD algorithm takes as its argument a lower bidiag-
onal matrix B € R™*tU*7 and therefore the first step in the SVD implementation is
to transform A to this form. As described in Section 2.1, the Lanczos algorithm may
be used to bidiagonalize the matrix. If the matrix produced is of size n X n rather
than (n + 1) X n, a zero row is appended to the bottom of the matrix.

Given B € R(™t1)*" the next step is to divide the matrix into two subproblems,
B, € ®*¢=D and B, € ROF+Ux(n=k)  where By, and B, are lower bidiagonal

matrices, and 1 < k < n. Note that & is typically assigned the value | %] [8].

B: oare, O
B— 1 Qg€ ’

0 p[rer Bo

where e; is the jth unit vector of the appropriate size [8]. The jth unit vector is the

jth column of the identity matrixz

/1 0 --- 0
I= :
\0 0 - 1

whose dimension is determined by the context in which it is used. Here, e is the kth
column of T € R*¥*F and e, is the first column of I € R(+1-k)x(n+1-k)
Once B has been partitioned, the SVD of each of the two subproblems, B; and

B,, is computed. The solution of the subproblems is done recursively until they are
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reduced to a trivial base case, at which time it is solved using a traditional, non-
recursive SVD method. The implementation discussed here applies the Golub-Kahan
SVD algorithm at this step. The dimension of the base case is established using
empirical evidence. For the particular implementations tested in this thesis, when
n < 15, the traditional Golub-Kahan SVD implementation [11] without the overhead

of recursion outperforms the divide-and-conquer method. Figure 3.1 illustrates this.

I
—— Divide—and-Conquer SVD
Golub-Kahan SVD

0.6 .
0.5 ,

(2]

e

c

5 E

[ E i

w R

£

o

£

= 03f

]

o

(@)
0.2

0.1

Figure 3.1: An Initial Comparison of CPU Times for Divide-and-Conquer and
Golub-Kahan Implementations (1 < n < 25)

The divide-and-conquer implementation discussed here therefore uses n < 15 as the
base case. However, no matter what dimension is used for the base case, there cannot

be more than O(log,n) levels of recursion.

27



3.2 Combining Subproblem Solutions

The bulk of the divide-and-conquer SVD algorithm consists of computing the SVD of
B, utilizing the SVDs of B; and B,. For the purpose of illustration, only these two
subproblems will be considered. Let the SVD of each B; be

The SVDs of B; and Bs can be combined in the following manner to create matrices

whose product is B.

(ak)\l 0 0 T
0 W; O
0 O aly Dy 0
B— a Q: k1 1 . o 0 ’ (3.1)
0 0 Q a Brfa 0 Dy
0 0 W,
\ Big2 0 0

where 17 is the last row of Q, A; is the last element of qy, I is the first row of Q,
and (s is the first element of gs. An identity matrix of the form I = GTG is inserted
between the first two matrices on the right side of (3.1), where G is a Givens rotation

(and hence orthogonal) chosen such that it zeros out the element Sy ps.
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( Co —S0 ( Co so\

1 1
I=G'G = , (3.2)
1 1
\ S0 Co —3S0 Co )
with ¢y = a’“(;\l, Sp = ’3’;;"2, and 7y = /(axA1)? + (Brp2)?. This gives
( ( ak)\l 0 0 T
0 W; O
B — @ Q00 ) g @ PO 1 0 o
0 0 Q q Btz 0 Do
0 0 W,
Brp2 0O 0 /
( To 0 0 \ T
0 W; O
1 Q1 O —Sod1 oy D; 0O
= 1 O 0
50 0 Q CoQ2 Brfa 0 Do
0 0 W,
0 0 O
M
= (Q q> w7 (3.3)
0
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Rearranging (3.3) gives

WB(Q q>T: 1\: . (3.4)

Note that W and (Q q)” are orthogonal matrices whose application transforms the
bidiagonal matrix B to (1\6[), where M € R™*" has nonzero elements only in the first

column and on the diagonal [8].

3.3 Computing the Singular Values

Because matrix M is an orthogonal transformation of B, the singular values of M

are also the singular values of B. Now M is of the form

This unique form facilitates the computation of the singular values using the secular
equation (3.9) below, but there are two other conditions that M must fulfill in order
for its singular values to be computed using this method. First some notation is
introduced. For a given precision, assumed here to be double precision, let machine
epsilon, denoted €y,,cn, be the smallest positive number which, when added to 1, gives

a number different from 1. Let 7 be a small empirically chosen multiple of €50, and
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let d; = 0 and D = diag(dy,...,d,). Computing the singular values of M using the

method to be discussed requires that

djyr — dj = 7||M]J5, (3.6)

and

2] = TIIM][s- (3.7)

Fortunately, any matrix in the form illustrated by (3.5) can be reduced to a matrix
that satisfies these conditions by permuting the matrix and using a deflation method
[8] to be discussed in Section 3.5.

Let the SVD of M be UQV7Y, where

U= (u, --,u,), Q=diag(wy, - ,w,), and V= (vy,---,v,).

If M is in the correct form and meets conditions (3.6) and (3.7), then the singular
values of M satisfy an interlacing property [8, 9]. This means that the singular values

of M lie between the corresponding diagonal entries of M such that

0=d1<w1<d2<---<dn<wn<dn+||z||2, (38)

where the singular values w; are the exact roots of the secular equation [8, 9:
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flw)=1+ ; ﬁ = 0. (3.9)

The secular equation is used when computing the singular values of M. The procedure
used to find the n roots of (3.9) is now outlined. For w;, where 1 < i < n, if

f (dH';lH—l) > 0, then w; € (di’ ‘llgﬂ)’ else w; € [%, di+1)- This is because

2
u}li)rlril?— flw) = OQ1)+ wlfcrilj pr—
2
= O+ 1 i = _
O( )+wi>rz?;."dz'_w °
and
lim f(w) = O(1)+ lim i
w—d;, werdyy, A7y — w?

2
Vs
= 0(1)+ lim —1 = 40,
w—rd; dig1 — W

This behaviour is depicted in Figure 3.2.

32



100 —

80 h

60 b

Figure 3.2: A Plot of the Secular Equation (3.9)

Suppose the case where w; € (di, %) applies. Let 0; = d; — d;, and let

_y @i
W) =2 G T d )
and
_ N i
W=D GG T d
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Equation 3.9 can be now be reformulated as

9i(n) = f(p+di) =1+ () + gi(p) =0, (3.10)

where the root in question is y; = w; — d; € (O, ‘5i; 1).

Now suppose the case where w; € [%, di+1) applies. Let 0; = d; — d; 41,

i 2

i (u) = Z ©6; — ) (d; ]+ i1+ p)’

Jj=1
and
s - @i
o () = .
W=D GG )

Equation 3.9 can now be reformulated as

gi(1) = f(p+ dipr) = 1+ 95 (1) + ¢ (1) =0, (3.11)

where the root in question is p; = w; — d;1 € [%, 0).

Finally, for the case when i = n, let §; = d; — d,,. Let
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3
BV

<
3
E
Il
£

— (0; — p)(dj + dn + 1)’

and

The secular equation (3.9) can now be reformulated as

In(p) = f(p+dn) =1+ Pp(p) + ¢n(p) =0, (3.12)

where the root to be found is u, = w, — d, € (0,]|z]|2)-

The roots to the reformulated secular equations (3.10), (3.11), and (3.12) are found
using a method such as bisection or rational interpolation. The particular method is
less important computationally than the stopping condition that is used [8]. Let 7
be a small empirically chosen multiple of €y,.n. The stopping condition proposed by

Gu and Eisenstat [8] is

19i(p)| < mn(L+ |9 (p)| + |ds(p)])- (3.13)

The roots wy, - -+ ,w, of the secular equation are the singular values of M, and there-

fore of B.
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3.4 Computing the Singular Vectors

In theory, the singular values of M are computed to high relative accuracy [8] using
(3.10), (3.11), and (3.12). In practice however, factors such as machine precision allow
only an approximation of the exact singular values. Let @y, - - , @, be the approximate
singular values of M, computed as described in Section 3.3. Then according to Gu
and Eisenstat’s Lemma 3.2 [8], there exists a matrix M such that @1, - , @, are its
exact singular values. In order to compute 1\7[, the values wy, - - - , W, must satisfy the
interlacing property of (3.8). Gu and Eisenstat note that because the exact singular
values of M satisfy (3.8), requiring the approximate singular values to also satisfy it is
an accuracy requirement for computing the singular values, rather than a restriction

on M [8]. M has the form

~ 22 dg
M = : (3.14)
\ % dy,
where the elements ds .. .d, do not change, and each element of 27 = (%,--- ,2,) is

computed as proposed by Lemma 3.2 in [8]:

n—1 .
wk_dZ 2 d2

&l = ) H H : Qi —

The sign of each 2; can be chosen arbitrarily to match the sign of the corresponding

The exact singular values of M, @;,--- ,&,, and vector Z; are used to compute
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the exact singular vectors of M. The SVD of M is then used as an approximation of

the SVD of M to compute the singular vectors of B [8]. Denote the singular vectors

of M by U = iy,---,10, and V = Vi, ,V,. They are computed to high relative

accuracy [8] using (3.15) and (3.16):

a= (o a ' i &z (3.15)
A\ - A2 —@f \hdﬁ—@V '
~ d222 dnén T - (dkék)2
= (-1, 2N 3 1 . 3.16
v ( B-F @ w3> \ Fa-ar O

This gives

M=UQVT ~x UQVT =

M.

Using these components and components from the SVDs of the subproblems B; and

B,, the SVD of the bidiagonal matrix B of the original problem is formed:

(0. (£) (w
(3w

0
Uxv?,

where Q, q, and W are as defined in Section 3.2.
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3.5 Methods of Deflation

In the divide-and-conquer SVD algorithm, deflation serves three purposes. The first
is to reduce M so that it satisfies conditions (3.6) and (3.7), the second is to maintain
the block structure of matrices Q and W for efficiency purposes, and the third is to

reduce the size of the problem and thus accelerate the computation of the SVD.

3.5.1 Deflation of Matrix M

As noted in Section 3.3, in order to satisfy the interlacing property (3.8) and the
secular equation (3.9), it must be the case that |z;| > 7||M]||; and |d; — d;| > 7||M||2
for i # j, where z = (21,- -, 2,)7 is the first column of M, d; = 0 and dp, .. .,d, are
elements My, --- , M, ,, and 7 is a small multiple of €p,ch-

First consider the condition that |z;| > 7|[M||s. Suppose that |z| < 7||M]|l..
Changing the value of |z;| to 7||M||2 allows |21 | to meet the necessary condition while

perturbing the matrix by O(7|M||2) [8].

[ \ [ M

z9 dg Z2 d2
M= |~ | = - | + O(r|M]]2).

\ %n d, \ dy |

For any subsequent z;, where 1 < i < n, if |2;| < 7||M]||, changing the value of the
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element z; to 0 also perturbs the matrix by O(7||M||2) [8].

Z1 \ z1
z9 dz ) d2

M=| ' = ' + O(r| M)
i d, 0 dz

= o) \= Y

The element d; is now a singular value of the perturbed matrix. The matrix can
be deflated by removing the ith row and the ith column, with d; being stored as a
singular value. The remaining (n — 1) X (n — 1) matrix has the same structure as M.

Now consider the condition that |d; — d;| > 7||M]||; for ¢ # j. Suppose it is the
case that |d; — di| = |d; — 0] < 7||M]||2, where 1 < ¢ < n. Changing the value of d;
to 0 and performing a Givens rotation from the left to zero out z; creates the new

matrix GM which is perturbed by O(7||M||2) [8].
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GM = ' ' ' + O(r||M||2)

= | +O(7[[M]l2),

where r = /27 + 27, s = z;/r, and ¢ = z/r. In matrix GM, d; = 0 is a singular
value [8]. The matrix can be deflated by removing the ith row and the i column, with
d; being stored as a singular value. The remaining (n — 1) x (n — 1) matrix has the
same structure as M.

Recall from (3.3) that B=(Q q) (1\61) W7, In order to maintain this equality, the
Givens rotation GT must be applied to Q from the right, where G is the transpose
of the Givens rotation applied to M from the left when zeroing out element z;. This

gives
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M T GM T
B:(Q q) 0 W:(QGT q) 0 W-.

Now suppose it is the case that |d; — d;| < 7||M||2, where 1 < i,5 <mn, and ¢ # j.
Changing the value of d; to the value of d; and applying a Givens rotation G from
the left and from the right to zero out z; results in the new matrix GMG?, which is

perturbed by O(r||M]||2) [8]. For example, let ¢ = 3 and j = 2. Then

1 21 1
GMG" = c s 2o ds ¢ —s | +0O([M]2)
\ —s ¢ 23 ds s c
21
= | 2 d +O(7[[M]2),
0 ds

where 7 = /27 + 27, s = z/r, and ¢ = z;/r. In matrix GM, d; is a singular value
[8]. The matrix can be deflated by removing the ith row and the ith column, with
d; being stored as a singular value. The remaining (n — 1) x (n — 1) matrix has the
same structure as M.

As in the previous case, the transpose G must be applied to the right of Q, where
G and G7T are the Givens rotations applied to the left and right of (1\6[) respectively
when zeroing out element z; € M. In addition, G must be applied to the left of WT,

or for ease of notation, GT is applied to the right of W. This gives
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B-(q q) 1\04 w'—(qar q) Gl\f,GT (WET)". (3.18)

The deflation of M is necessary to ensure that the matrix satisfies the interlacing
property and the secular equation. Two other forms of deflation, known as local and

global deflation (8], are performed for the sake of efficiency, to accelerate the speed of

computation. These methods are discussed in the following two subsections.

3.5.2 Local Deflation

The greatest computational cost in the divide-and-conquer SVD algorithm arises from
the multiplication of matrices [8]. When the singular vectors of B are formed in (3.17),
the products QU and WYV must be computed. This computation can be made more
efficient by utilizing the fact that Q and W contain zero blocks. This simply means
that they each have blocks of elements that are zero. The local deflation procedure
ensures that the structure of these blocks is maintained, so that efficient multiplication
of the matrices can take place. According to Gu and Eisenstat, the local deflation
procedure speeds up the divide-and-conquer SVD algorithm by a factor of two [8].
As noted in the previous deflation method, when a Givens rotation is applied to
the left of M, its transpose must be applied to the right of Q. Likewise, when a
Givens rotation is applied to the right of M, its transpose must be applied to the
left of W. In most cases, this does not affect the block structure of (Q q) and W;
however there is one case where the block structure is compromised. Local deflation

deals with this case.
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As illustrated in Sections 3.2 and 3.3, M is of the form

ak)\l 0 0
z9 d2
M = ) ) = orly Dy O
Befa 0 Dy
Zn d,

If it is the case that an element d; € D; is close in value to an element d; € D,
such that |d; — d;| < 7|[M||2, then when the deflation process takes place, the Givens
rotations applied to Q and W disturb the block structure of these matrices. This
prevents efficient matrix multiplication when the singular vectors of B are computed.
The following, based on an example from Gu and Eisenstat [8], illustrates this case.

Suppose that ds, the first element of Dy, is close in value to d,, the last element
of Ds; i.e., |d, — d3| < 7||M]||5. Then, as described in the previous subsection, ds is

given the value of d,,, and a Givens rotation G is applied to M, zeroing out z,. Let

Q1:<€11 Q1>aQ2:<Q2 (lg)awlz(ﬁfl W1>7and W2:<W2 Wg)

such that

~ oY T
B_ ( Q q ) M WT — codi qr Qi (~) 0 GMG
sog2 0 0 Q2 Qo 0
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with ¢y, s as defined for (3.2) and q as defined in (3.3) . Also let

D; = diag (dz, f)l) , Dy = diag (f)g,dn> yoply = “ ;and  fBrfe =

Z1 Zn,
Then
[ =
agAdy 0 0 zy da
M = Odkll D1 0 = 21 f)]_
Brfa 0 Dy Zy D,
Zn, d,

Assigning the value of d, to ds and applying the Givens rotations G and G to the

left and right of M, respectively, gives

To
r d, -
GMG' = [ 7 D, + O(7[[M]|z) = L. O(r||M[|2),
% D, o
\ 0 d,
where r = /22 + 22, ¢ = z3/r, and s = 2, /r. Substituting this into (3.18) gives
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GMGT”
B = (QGT q) (We™)!

0
M; O
T
_ (x % q) 0 4, (Yl y) + O(rMly),
0 0
where
. codi cqi Qi 0 —sq
X = o P B and X = .
5092 sq2 0 Qg cqz
and
0 cwy Wl 0 —S5W1
Yi=|1 0 0 o0 and y= 0
0 Sﬁ@ 0 Wz CWQ

Thus, d, is an approximate singular value of B and can therefore be deflated [8].
The left and right singular vectors of d,, are approximated by x and y respectively.
The structure of the matrix M is the same as that of M, and so the process of local
deflation can continue until there is no case left where |d; — d;| < 7||M]|; for ¢ # j.

Completing the process of local deflation gives
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M; O .
B:(:;c1 %, q) 0 0, (?1 ?2) OB, (319)

0 O

where permutations of the diagonal entries of the D; and of the columns of the Q;

and W; are ignored [8]. X; and X, have the form

0 CWO,]_ V~V1 0

. Cod1 CQO,l Q O ~
X; = and Y, = 1 0 0 0

sod2 Qo2 0 Qo . .
0 sWy, 0 W,
The column dimension of Qo,l, Qo,g, VNVO,1, and V~V02 is the number of local deflations.
The columns of Q;, Q2, W1, and W5, are the columns of Q;, Q2, W1, and W5, that
have not been affected by the local deflation. €2, is a diagonal matrix containing the
deflated singular values on its diagonal, with the columns of Y, and Y, containing

the corresponding left and right singular vectors respectively [8]. M, has the form

\ % D; )
The dimension of Dy is the number of deflations performed by the local deflation
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process. Submatrices 1~)1 and ]32 contain the elements of D; and D5 that have not
been affected by local deflation, with z,, z;, and Zs defined accordingly [8].
Let U132, VT be the SVD of M;. Substituting this into (3.19) gives

0,57 o )
B - (x %, q) o a, <Y1 s@) L O(r|Bl)
0 0

Q, 0
T
- (xlul X, q) 0 4, (Ym Yz) OBl
0 0

The approximate left and right singular vectors of B are then (lejl X, q) and
(?1\71 ?2) respectively. Local deflation preserves the block structure of 5(1 and

?1. This allows the efficient computation of the products leJl and ?1\71.

3.5.3 Global Deflation

Whereas local deflation is applied to subproblems when their SVDs are being com-
bined for the computation of the SVD of B, global deflation deflates a subproblem
before its SVD is even computed. The singular values and corresponding singular vec-
tors that are deflated by the global deflation process are then absent from subsequent
subproblems (8], reducing the dimension of the problems.

Recall from Section 3.1 that the matrix B € R+t1)*" ig divided into submatrices

B; € ®¥*¢1 and B, € ROAIXK) - and scalars oy and Sy, where k = |2].
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Global deflation subdivides B; in a similar manner.

B1,1 ;€
B B ajyjeiy
- - Bier B1,2 iy €5

Birjer Ba
Birjer Bo
Here, By; € R*0Y and By, € R0~V where i +j =k, and j = |£]. As before,
e; is the jth unit vector of the appropriate size.

Let X (D(IJ’Q)WlT,2 be the SVD of By . Let the first row of X; be (f1T72 gol,g),
and the last row be (1{2 A12). Then

( Bi: o€
_ Bzf, D , (67 1 , _
B=X BT T Y7, (3.20)
Bivre 0 A
\ Birjer Bo

where X = diag (I; Xi2 IL,—i—j+1) and Y =diag(Li.y Wia 1 L, ;).

The global deflation takes place as follows. Let d, be the sth diagonal element of
D; s, let f be the sth element of fi 2, and let I, be the sth element of 1, 5. Ignore the
zero elements of the middle matrix of (3.20). The (¢ + s)th column is then (d,) and
the (i+ s)th row is (ﬁzfs d, ai+j[s). Suppose |8;fs| and |a;. ;1| are both small, for
example |B;fs|, |t jls| < 7||Bill2- Both |B;fs| and |y ls| can then be perturbed to
zero. d, is a singular value of the perturbed matrix, and the (i + j)th columns of X
and Y are its corresponding left and right singular vectors [8]. d, and these singular
vectors can then be deflated from all subsequent subproblems, globally reducing the

dimension of the problem to be solved.
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Chapter 4

Results

The implementions and tests discussed in this thesis use the Matlab problem solving
environment. Tests are run using Matlab Release 13 on an Ultrad SunFire V880
(Solaris 8 operating system) with 4 CPUs and a total of 8 GB shared memory.

As described in Section 1.3, the matrices used in LSI are very sparse. Searching
the Text Retrieval Conference collection, for example, results in term-by-document
matrices with a density of only 0.001—0.002% [3, 4]. This means that 99.998—99.999%
of the elements in the matrices are 0. On average, the density of a term-by-document
matrix is approximately 1% [1, 4]; therefore the testing described here uses matrices
with approximately 1% nonzero elements. These matrices are generated using the
built-in Matlab function sprand. The function call sprand(m, n, density) pro-
duces a random m X n sparse matrix with approximately density * m * n nonzero
entries uniformly distributed on the interval [0,1].

The sparse test matrices are first bidiagonalized using an implementation of the
Lanczos algorithm [6, 7] (Algorithm 2.1) based on code written by Sarah MacKinnon-

Cormier [11]. The SVDs of the resulting (n + 1) x n matrices are then computed.
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The divide-and-conquer implementation uses a base case of n = 15, as discussed in
Section 3.1.

The following example illustrates this process. For the purpose of this example,
m=n =9, density = 10% and a base case of n = 4 is used for the divide-and-
conquer implementation. Note that to simplify this example, matrix elements are

shown rounded to 2 decimal places, and the singular vectors are not displayed.

Example 4.1:

A = sprand(m, n, density)

0 0 0 0 0 009 0 0
o 0 0 0 0 0 0 0 0.07

0 0 0 0 0 0 0 0 0

0 0051 0 07 0 0 0 0

= 0 0 0 0 0620 0 0 0

0220 0 0 0 0 0 0 0

0o 0 0 0 0 0 0 0 0

0 0 0 063 0 0 0 0 0

\ 0 0015 0 0 0O O 0 O
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B = 1lanczos(A)

( 0.60 0 0 0 0 0

0 0 0

0.74 034 0 0 0 0 0 0 0

0 056 040 0 0 0 0 0 0

0 0 056 066 O 0 0 0 0

B 0 0 0 043 016 O 0 0 0
- 0 0 0 0 0.25 0.17 0 0 0
0 0 0 0 0 007 0.40%1072 0 0

0 0 0 0 0 0 0.97 0.06 0

0 0 0 0 0 0 0 0.81 .40

0 0 0 0 0 0 0 0 .80

The SVD of B is then computed. For this example only the singular values from
the divide-and-conquer implementation and the built-in Matlab SVD function are
compared. The following commands are used in Matlab, where dc_svd is the divide-

conquer implementation and svd is the built-in Matlab function:

[U1,S1,V1] =dc_svd(B);
[U2,S2,V2] = svd(B);
sl = diag(S1);

s2 = diag(S2);
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The singular values contained in s1 and s2 are as follows:

1.02747756077280
1.02715741993593
0.96465307783203
0.96459969118453
sl =] 0.63067714200223
0.62953517851245
0.34051401537432
0.22749403687719

0.06576695330954

In this case, the divide-and-conquer SVD implementation and the built-in Matlab
SVD function produce the same singular values to at least 15 digits of accuracy.
This, however, is not always the case. In this example, the singular values range
from approximately 0.0658 to 1.0275. If there is a much greater spread between the

singular values, then this implementation of the divide-and-conquer algorithm loses

s2 =

1.02747756077280 \
1.02715741993593
0.96465307783203
0.96459969118453
0.63067714200223
0.62953517851245
0.34051401537432
0.22749403687719

\ 0.06576695330954 )

accuracy. The following example illustrates this behaviour.
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Example 4.2:

In this example, the first two diagonal elements of the bidiagonalized matrix B

from Example 4.1 are increased by a factor of 10°, giving the perturbed matrix B.

0.60 * 10° 0 0 0 0 0 0 0 0
0.74 0.34%10° 0 0 0 0 0 0 0
0 0.56 040 O 0 0 0 0 0
0 0 0.56 0.66 O 0 0 0 0
B 0 0 0 043 016 O 0 0 0
0 0 0 0 025 0.17 0 0 0
0 0 0 0 0 0.07 040%107** 0 0
0 0 0 0 0 0 0.97 0.06 0
0 0 0 0 0 0 0 0.81 .40
0 0 0 0 0 0 0 0 .80

Computing the singular values of B gives
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( 6.03284973308697 ( 6.03284973308696

3.35336075134385 3.35336075134383
0.00010271574199 0.00010271574199
0.00009674182117 0.00009674412461
§1=10"* | 0.00009645996912 | , §2=10"* | 0.00009645996912 |,
0.00006295351785 0.00006295351785
0.00004326121052 0.00004326148087
0.00002999189629 0.00002999190992
0.00000838082131 \ 0.00000838082134)

where the elements of §1 and §2 are the singular values produced by the divide-and-
conquer implementation and the Matlab SVD function respectively. In this case, the
accuracy of the singular values produced by the divide-and-conquer implementation
range in accuracy from 9 to 15 digits. The introduction of scaling methods could
increase the accuracy of this particular divide-and-conquer implementation.

In order to compare the running times of the SVD methods discussed, two sets
of trials were conducted. In the first set of trials, CPU times are compared for three
SVD methods: a Golub-Kahan implementation coded by Sarah MacKinnon-Cormier
[11], the divide-and-conquer implementation previously discussed, and the built-in
Matlab SVD function. For this first set of trials, n = 50,100, 150,...,750. The
results shown in Figures 4.1 and 4.2 are the fastest CPU times for a minimum of five
different trials. Figure 4.1 is a close-up view in which the difference in CPU times

between the divide-and-conquer implementation and the Matlab SVD is more evident
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than in the wider view of Figure 4.2. The Golub-Kahan implementation [11] is not
tested on matrices with n > 750 because of the huge disparity between its running
time and the running times of the other two methods tested. It is important to note
that the Golub-Kahan implementation and the divide-and-conquer implementation
are both unoptimized code. Thus, the dramatically faster CPU times for the divide-
and-conquer implementation illustrated in Figures 4.1 and 4.2 are evidence of the
efficiency of the divide-and-conquer SVD algorithm.

In the second set of trials, only the CPU Times for the divide-and-conquer im-
plementation and the built-in Matlab SVD function are compared. The trials in this
second set are for n = 750,1000,1250...,4500,5000. The results shown in Figure
4.3 are the fastest CPU times for a minimum of three different trials. The figure
illustrates that even though the Matlab SVD function is highly optimized code, the
divide-and-conquer implementation is faster for 1500 < n < 3750. Although the re-
sults shown for n > 3750 are unexpected, the CPU times for the divide-and-conquer

implementation are within a factor of 1.15 of those for the Matlab function.
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Chapter 5

Conclusions and Future Work

The size of the Internet and of the databases associated with it continues to expand,
making the efficient retrieval of information an area of continuing interest. It was
the goal of this thesis to illustrate that a divide-and-conquer approach is an efficient
method of computing the SVD of the term-by-document matrices formed by the LSI
search method. Results indicate that when compared with a similarly coded tradi-
tional Golub-Kahan method, the divide-and-conquer method is much more efficient.
For example, for a 501 x 500 bidiagonal matrix, the divide-and-conquer implemen-
tation is faster than the Golub-Kahan implementation by a factor of 95, and this
factor increases as the size of the matrices tested increases (see Figure 4.1). As al-
ready noted, the term-by-document matrices formed during the LSI process are very
large, and the SVD needs to be computed relatively often. The divide-and-conquer
approach thus offers potentially tremendous savings in computational time.

It is interesting to note that the divide-and-conquer implementation outperforms
the built-in Matlab SVD function for (n+1) x n bidiagonal matrices with 1500 < n <

3750. This is despite the fact that in all tests the divide-and-conquer implementation

29



is unoptimized and runs as interpreted code, whereas the built-in SVD function is
highly optimized and runs as compiled code. The results are thus an indication of the
computational efficiency of the divide-and-conquer approach. It is possible that the
divide-and-conquer implementation would again outperform the Matlab SVD function
when the running times are compared for matrices with larger n than is tested here;
however it was not feasible to run such trials for this thesis.

Even using the divide-and-conquer algorithm, calculating the SVD is still a rela-
tively expensive process. When terms or documents are added to, or deleted from, a
term-by-document matrix, it makes sense to update or downdate the SVD that has
been calculated for that matrix, rather than going to the expense of calculating the
SVD of the modified matrix from scratch. Updating and downdating the SVD are
areas not addressed by this thesis, but future work could include investigating an
efficient means of updating and downdating the SVD of a matrix. These functions
can then be added to the existing divide-and-conquer implementation. The running
time of the resulting implementation can then be compared with that of traditional

implementations, using large data sets representative of those used in LSI.
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