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Abstract

Over the last two hundred years, diffraction grating spectroscopy has unlocked fundamental discoveries

in physics, astronomy, chemistry, and biology. Recently, synchrotron light sources have extended grating

spectroscopy to the soft X-ray range, where it has provided powerful techniques for material science research.

However, it is inherently challenging to produce diffraction gratings with good efficiency in this wavelength

range. Given that the efficiency is critical to the speed and feasibility of experiments, there is a strong

motivation for improving it. Due to the high cost and long times associated with grating manufacturing,

this optimization cannot be done by trial-and-error. Therefore, the long-term goal of this project is to

produce software that can quickly predict and optimize the grating efficiency.

In general, there is no analytic solution for calculating the grating efficiency. A variety of numerical

methods have been proposed [12][5][1][6][7][13][10][8]; almost all of these seek to find a numerical vector

solution to the Maxwell Equations in the presence of the incident light and the periodic boundary conditions

imposed by the grating. The differential method of Neviere et al. [10] has been found to be the most

accurate in the soft X-ray regime. A commercial implementation of the method is available, but it requires

between 30 seconds and 3 minutes to compute the efficiency for a single grating at a single wavelength on a

modern personal computer. This calculation time is multiplied by a factor of hundreds or thousands when

a user attempts to calculate the efficiency over a wavelength range, optimize the grating efficiency, or fit

the efficiency-wavelength curve to an empirical measurement. To make the latter three techniques fast and

feasible, this project intends to create a parallel implementation of this method, suitable for running on

distributed-memory high-performance computer systems.

In this report, we summarize the motivation for the project, present mathematical details of the solution

method, and define the short-term and long-term project goals. While work remains to be done on resolving

problems with the numerical solution of the grating problem, we highlight successful coarse parallelization

over multiple calculations, fine parallelization within a single calculation, and deployment onto the Westgrid

distributed memory cluster bugaboo. Comprehensive timing studies show a nearly linear speedup in both

parallel modes, with the coarse parallelization scaling effectively to hundreds of processors.
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1 Introduction

1.1 Background on Gratings

A diffraction grating is an optical device used to manipulate light based on its wavelength by exploiting

the principle of interference when light waves encounter a periodic structure (Figure 1). When light strikes a

grating, it is transmitted or reflected at specific angles (called diffraction orders), where the angle of each

order depends on the wavelength. This phenomenon allows us to build a variety of devices for controlling the

spectrum of light: for example, we can use them in monochromators to extract a small range of wavelengths

from a multicoloured light source, or we can use them in spectrometers to identify the wavelengths that

are present in an unknown light source (Figure 2).

n
=
�2

n
=
�1

n =
0

n = 1

↵ ��1

Figure 1: In a reflection grating, interference causes light waves hitting a groovy surface to be reflected into discrete angles,

called orders. Within each order, the exact angle depends on the wavelength λ and is given by the Grating Equation (1). The

size of these grooves has been exaggerated; effective diffraction happens when the groove spacing d is larger than, but within a

few orders of magnitude of the wavelength.

The angles of the diffraction orders are given by the famous Grating Equation, discovered by Fraunhofer

in the early 1800s [3]:

nλ

d
= sinβn − sinα (1)

Unfortunately, this equation says nothing at all about how much light ends up in each order, or about

how much light is absorbed by the grating. These questions are related to the grating efficiency, which

is defined as the ratio of the intensity of diffracted light in a given order to the intensity of incident light.

The efficiency is important to the people who use devices like monochromators and spectrometers because

it affects both (a) how long their experiment will take to produce good statistics, and (b) the feasibility of
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Figure 2: Gratings provide powerful spectral control: In these examples, a monochromator is used to select out a narrow

range of wavelengths, and a spectrometer is used to determine the intensity of wavelengths present in unknown light.

performing that experiment at all.1

The grating efficiency is determined by many parameters, including the material of the grating, the

angle and wavelength of the incoming light, and the exact geometry of the grooves. Unfortunately, there

is no exact formula for calculating the efficiency of a grating. Of the many different methods that have

been proposed [15][12][5][1][6][7][13][10][8], all of the ones that produce accurate results depend on finding

a solution to Maxwell’s Equations – the set of coupled differential equations that describe the propagation

of electromagnetic radiation – in the presence of the grating’s periodic boundary conditions. The problem

cannot be solved analytically; ultimately it requires numerical approximation and expensive computation.

The proposed aim of this project is to apply high-performance computing to improve beyond the speed and

accuracy of existing programs for modelling grating efficiency.

1.2 Motivation: Why Grating Efficiency is Important

For almost two hundred years, diffraction gratings have been at the heart of many instruments responsible

for breakthroughs in scientific understanding. Today, they are used in astronomy telescopes, chemistry spec-

trographs, spectrophotometers for life science, and in optics for a diversity of material science experiments,

1If the grating efficiency is so low that the output signal is smaller than the background noise level, the experiment simply
becomes impossible; an experimenter could in principle collect data indefinitely to no avail.
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working over a wide range of wavelengths from far-infrared light to soft X-rays. The sensitivity and speed of

these instruments depend on the efficiency of their gratings. In some cases – such as Peter Zeeman’s Nobel

Prize-winning discovery of quantum energy level splitting in a magnetic field [16] – improvements in grating

efficiency have made a previously undetectable effect detectable.

The recent construction of many soft x-ray research beamlines – at the Canadian Light Source and

other synchrotron facilities around the world – has demanded improvements in grating efficiency when used

with soft x-ray light.2 Unlike hard X-rays, which are highly penetrating, soft X-rays are easily and quickly

absorbed by small amounts of material; this is because their energy matches the binding energy of core-

level electrons in common lightweight elements such as nitrogen, oxygen, carbon, and lightweight metals.

This makes it inherently challenging to develop efficient mirrors and gratings for soft x-ray applications.

Compounding the problem, some powerful experimental techniques offered by these beamlines – such as Soft

X-ray Emission Spectroscopy (XES) – are notoriously “photon-hungry” [9]; the demand for high-intensity

light makes efficient gratings even more critical.

The diffraction gratings used in the soft X-ray range are typically expensive optical devices; they are

created one-at-a-time by a precision mechanical “ruling engine”, which slowly inscribes their grooves over

days or weeks. Therefore, it is infeasible to optimize the grating efficiency by trial-and-error; beamline

designers require a way to optimize the parameters and predict the efficiency before ordering their gratings.

Traditionally, beamline designers have often ignored the efficiency, optimized it using “rules-of-thumb”, or

simply left it up to the grating manufacturer. Today’s cutting-edge experiments demand a much more

rigorous approach, integrated into the design phase of the beamline, so that all of the optical parameters

and constraints can be optimized simultaneously.

1.2.1 Desired Use-Cases for High Performance Computing of Grating Efficiency

There are two primary ways that software could help in the design of efficient soft X-ray beamlines:

1. Calculating Grating Efficiency over Wavelength: Typically, designers want to know the efficiency

of a hypothetical grating, over the wavelength range where that grating is intended to be used. For

typical soft X-ray gratings, the input parameters include:

• the material of the grating substrate

• the material and thickness of the surface coatings, if applicable

• the incidence angle of light onto the grating

2Soft X-rays refer to light with photon energy from approximately 100 eV to 10 000 eV.
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• the geometry parameters that specify the shape and periodicity of the grooves. (These parameters

will depend on the nominal shape of the grating grooves: rectangular, triangular, trapezoidal,

sinusoidal, or some arbitrary periodic function.)

• the range and increment of the wavelength points to be calculated.

Figure 3 is an example of the desired output for this use-case: the predicted grating efficiency in the

first three orders, as a function of wavelength (or in this case, photon energy, which is directly related).
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Figure 3: An example of the desired output for Use-case 1: The predicted efficiency of a grating in first, second, and third

order, over a range of photon energies from 80 eV to 650 eV.
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2. Optimization of grating parameters: Instead of simply predicting the efficiency, a designer prob-

ably wants to optimize it by varying the grating parameters within an acceptable range.3 A global

search method is desired here for two reasons: the efficiency function may have local maxima, and the

parameters have hidden dependencies. (For example, the optimal “blaze angle”, or the angle at the

base of a triangular groove profile, is highly coupled to the incident angle, order, groove width, and

wavelength. [11])

A simple implementation could try to optimize the efficiency at a single wavelength, called the “design

point”. However, most gratings are used over a range of wavelengths; in this case it would be best to

optimize the area under the efficiency-wavelength curve.

Finally, there is one computationally intensive use-case that would be valuable to grating researchers:

3. Fitting grating parameters to measured efficiency: To validate and improve on modelling

methods, it is important to actually measure the efficiency of real gratings. This can be done on

special beamlines that have been designed with diffractometer chambers for this purpose. (Figure

4 compares the experimentally measured and predicted efficiencies for one particular grating.) For

example, in my own thesis research, it is becoming evident that the micro-structure of the grating

surface (oxidation and roughness) dramatically affects the efficiency. However, these surface parameters

are difficult to measure directly. If these parameters could be incorporated into the efficiency model, a

curve-fitting search could determine the parameters that best match the theoretical to the measured

efficiency curves.

2 Problem Formulation

All rigorous grating efficiency methods represent light waves by their time-harmonic electric and magnetic

fields, and then solve for the fields in the vicinity of the grating’s periodic boundary conditions. The problem

is numerically challenging (i.e., interesting) for several reasons:

1. Maxwell’s equations give rise to a coupled pair of second-order differential vector equations.

2. Because the electric and magnetic fields end up represented by complex or real-valued exponential

functions, computations typically require integrating sums of large positive and negative growing ex-

ponential functions; this poses round-off and stability challenges.

3The grating parameters also affect the focussing and resolution characteristics of the instrument, therefore the designer will
always have constraints for the parameters. In other cases, they might want to know if a certain increase in efficiency is worth
the trade-off it causes in resolution.
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Figure 4: In this example, the grating parameters were varied to determine the best fit to the experimental efficiency

measurements (square markers).

3. The geometrical variety of the possible grating groove shapes results in complicated boundary con-

ditions. Modern exotic grating technologies using layers of thin-film coatings make this even more

complicated.

This section summarizes a numerical method known as the differential method. Appendix A provides

a physics-based formulation of the technique; here we state only the final results that are essential for

implementing the numerical solution.

2.1 Scope, limiting assumptions, and problem setup

To aid the understanding of the theory in this report, and to reduce the complexity of the project to make it

possible to complete within the time available, we suggest the following simplifications to the general grating

problem. Figure 5 illustrates the geometry referenced here.

• In the z−direction (out of the page), the grating is invariant and extends forever.

• The grooves of the grating can be described by a profile function yp = g(x), which is periodic on an

interval d. The grating also extends forever in the x−direction.

• The incoming light can be represented as an infinite plane wave, with a sinusoidal variation in time,

and is propagating along a wave vector k2 contained totally in the x− y plane (i.e., within the plane

of the page.) The incident wave vector makes an angle θ2 with respect to the grating surface normal.

• The incident light is perfectly polarized, with an electric field vector aligned along the grooves. This

is referred to as Transverse Electric (TE) polarization.
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Figure 5: Geometry and notation for the simplified grating problem: a one-dimensional grating with in-plane incidence

The grating and the incident light are invariant along z, so the problem is reduced to two dimensions. These

simplifications greatly reduce the complexity of the solution, but still allow us to describe the majority of

gratings used in soft X-ray instruments.4

As a brief note on notation, we designate the region above the grating (y > a) as Region 2; Region 1

is below the grooves inside the grating substrate (y < 0). Subscripts are used to designate the region and

the order: for example, θ2,n represents the n−th order diffraction angle in Region 2. Some coefficients use

superscripts instead; B
(2)
n is the n−th coefficient in Region 2.

2.2 Summary of the differential method

In electromagnetic theory, light is described as a travelling wave with electric and magnetic field components.

The goal of the differential method is to solve for Ez, the z−component of the total electric field (hereafter,

“the field”) in the vicinity of the grating. The field satisfies a wave equation:

∇2Ez + k2(x, y)Ez = 0 (2)

4To justify this: In the X-ray domain, gratings are used at grazing incidence angles, where the TM polarization efficiency
becomes virtually equivalent to the TE efficiency. Most production gratings consist of a metallic layer on a SiO2 substrate,
but the coating is thick enough to be considered as the grating substrate itself. Finally, almost all devices use an “in-plane
mounting” configuration identical to the 2D situation described here. The one practical deficiency is that we cannot model
stacks of dielectric coatings; however, once we have the basic implementation, this can be incorporated through a well-known
matrix propagation algorithm. [6]
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and a set of boundary conditions imposed by the incident light and the grating interface. The interaction of

X-rays with the grating material is characterized by its complex refractive index, v1. The function k2(x, y)

is related to the wavelength and the refractive index, so it can take one of two values depending whether the

position (x, y) is inside the grating material (v1), or outside of the grating grooves (v2).

The periodicity of the grating in the x−direction suggests using a Fourier basis to express the field, where

each coefficient un corresponds to a single diffraction order n.

Ez(x, y) =

∞∑

n=−∞
un(y)eiαnx (3)

This Fourier representation is exact when the limits extend to n = [−∞,∞]. Obviously we need to truncate

the limits to n = [−N,N ] when doing numerical work; an acceptable limit for N can be found through

convergence testing.

Analytic solutions for the field are available in the regions above and below the grooves (Region 2, Region

1). These expressions are known as the Rayleigh expansion, and have unknown coefficients A
(1)
n and B

(2)
n .

The coefficients are related to the intensity and thus the efficiency of each diffraction order.

Ez(x, y) = A
(2)
0 eiα0x−iβ(2)

0 y +
∞∑

n=−∞
B

(2)
n eiαnx+iβ

(2)
n y Region 2 (y > a) (4)

Ez(x, y) =
∞∑

n=−∞
A

(1)
n eiαnx−iβ(1)

n y Region 1 (y < 0) (5)

(The constants αn and βn can be calculated directly from the incidence geometry; see Appendix A.5. The

constant A0 is related to the intensity of the incident wave.)

To find these coefficients, we need to solve the field inside the modulated region between y = 0 and y = a.

Applying the wave equation in the Fourier basis gives a set of second-order differential equations (one for

each n), that can all be captured in the matrix notation:

d2 [u(y)]

dy2
= M(y) [u(y)] (6)

where we have defined the column vector [u(y)] with the 2N + 1 components un(y).

The (2N + 1) × (2N + 1) square matrix M(y) must be calculated at each y value, using the groove

geometry and refractive index of the material:

Mnm(y) = −k2(n−m)(y) + α2
n δnm δnm =





1, if n = m

0, if n 6= m
(7)
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where k2n is computed from a Fourier expansion of the step function that the refractive index forms at each

y value; it will depend on the exact profile of the grooves. (See Appendix A.3.)

This matrix equation represents (2N + 1) boundary value problems (BVPs) for functions un of y, with

bounds at y = 0 and y = a. Unfortunately, the electromagnetic boundary conditions do not provide the

values of the functions here; they only provide a link between the functions and their derivatives at the

endpoints:

dun(y)

dy

∣∣∣∣
y=0

= −iβ(1)
n un(0) (8)

dun(y)

dy

∣∣∣∣
y=a

=





iβ
(2)
n un(a) (n 6= 0)

−iβ(2)
0 A

(2)
0 e−iβ

(2)
0 a + iβ

(2)
0

(
un(a)−A(2)

0 e−iβ
(2)
0 a
)

(n = 0)
(9)

2.3 Solution implementation: The Shooting Method

At this point, we have 2N + 1 second-order boundary value problems that need to be integrated in the

y−direction (Eqn. 6). In this BVP, the boundary conditions to not provide any values; only a link between

the unknown function and its derivative. To handle this complication, the original theory authors used

a technique called the shooting method [14]. Other BVP-solving methods are now available, but this

method is used by the reference implementation, so we describe it here and use it for the first-generation

implementation.

Because the wave equation is a linear system, we can construct a general solution that matches the

boundary conditions out of a linear combination of trial solutions. The Fourier expansion for the field

represents a complete basis, so we can use it to generate a complete set of 2N + 1 trial solutions [ũ(y)]p for

the vector [u(y)], where p = [−N,N ]. Any orthogonal set of particular solutions that satisfies the boundary

conditions at y = 0 (Eqn. 47) will be acceptable, so we choose these values for the p−th trial solution at

y = 0:

ũn(0)p = δp,n (10)

ũ′n(0)p = −iβ(1)
n δp,n (11)

This transforms the 2N + 1 boundary value problems into (2N + 1)× (2N + 1) initial value problems. All

of the trial solutions can now be individually integrated from y = 0 to y = a, using Eqn. 6:

[ũ′′(y)]p = M(y)[ũ(y)]p
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using a grid of y values and a reliable numerical integration routine (Runge-Kutta, etc.).

Finally, we need to find a linear superposition of the trial solutions that satisfies the boundary conditions

at y = a (Eqn. 44, 46):

+N∑

p=−N
cpũnp(a) = A

(2)
0 e−iβ

(2)
0 aδn,0 +B(2)

n eiβ
(2)
n a (12)

+N∑

p=−N
cpũ
′
np(a) = −iβ(2)

0 A
(2)
0 e−iβ

(2)
0 aδn,0 + iβ(2)

n B(2)
n eiβ

(2)
n a (13)

It can be shown that the superposition constants cp can be identified with the coefficients A
(1)
n , for cn = A

(1)
n .

Therefore, these represent 2(2N +1) linear equations for the 2(2N +1) unknowns A
(1)
n , B

(2)
n . If we eliminate

B
(2)
n , we can express the resulting equations in linear matrix form Ax = b:

T
[
A(1)

]
=
[
V (2)

]
(14)

where
[
A(1)

]
is the vector of A

(1)
n coefficients,

[
V (2)

]
is a vector defined by the incident wave,

V (2)
n = iδn,0(β(2)

n + β
(1)
0 )e−iβ

(2)
0 a (15)

and T is the square matrix with elements

Tnp = iβ(2)
n ũnp(a)− ũ′np(a) (16)

Using LU decomposition or any other standard method to invert and solve the linear system of Eqn. 14

provides the coefficients for the transmitted orders A
(1)
n . In the final step, Eqn. 12 provides the B

(2)
n

coefficients, from which we can compute the reflected efficiencies.

3 Parallel Decomposition

Based on analysis of the numerical method, and the use-cases identified in Section 1.2.1, we identify the

following opportunities for parallel decomposition:
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3.1 Fine-grained Parallelization

Calculating the grating efficiency in all orders n at a single wavelength λ can be viewed as a single computation

of the “efficiency function”:

en = eff(λ, p1, p2, . . .) (17)

where the parameters p1, p2, . . . represent the grating parameters.

This computation can take from several seconds to several minutes using existing commercial serial

programs on a personal computer. Fine-grained parallelization attempts to speed up a single invocation

of the differential method.

1. In the shooting method, all of the 2N + 1 trial solutions need to be numerically integrated from y = 0

to y = a. All of the trial solutions are independent, allowing parallelization of this process over p.

Profiling results (Table 1) show that this integration, including calculation of the permittivity matrix

M(y) at each integration step, represents 99.99% of the total calculation time. This suggests that this

is the (only) worthwhile candidate for parallelization.

2. The permittivity matrix M(y) must be calculated based on the grating profile, for each grid value along

the y−axis. If the integration routine uses a fixed step size, the computation of all the M matrices

could be parallelized over grid points. This is not directly possible if the integration routine uses a

dynamic step size, in which case M would need to be evaluated at each integration step.

3. The final step of the shooting method requires inversion of a 2N + 1 linear algebraic system; this could

optionally use a parallel iterative solver, but for typical N values from 15 to 45, there is little room

for improvement here: the matrix calculations are already small, fast, and fit easily within a single

processor’s memory space. With N = 15, they account for only 0.0095% of the total run time of the

serial program (Table 1).

3.2 Coarse-grained Parallelization

Fine-grained parallelization over trial solutions has an obvious limit to scaling: it can only use up to 2N + 1

processors. However, all three of the use-cases identified in Section 1.2.1 require repeated calculations

of the efficiency function over different wavelengths, parameters, or both. Therefore, because all of these

calculations can be done completely independently, we might obtain a true linear speedup using a massive but

“embarrassingly parallel” distribution of the computation over wavelength. This avoids nearly all overhead
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Table 1: Time profile measurements of solver operations, averaged over 5 runs in single-threaded mode.
Essentially all of the time is spent in the integration of the trial solutions, which includes the required
calculation of M(y) at each integration step. This example is for a blazed grating, using N = 15.

Solver Operation Percent of Run time

Allocate Memory 0.0004%
Setup problem variables 0.0001%

Compute αn, β
(2)
n , and β

(1)
n values 0.0009%

Integrate all trial solutions 99.9886%
Solve linear system for all An 0.0095%
Compute all Bn 0.0003%
Compute and package efficiencies 0.0001%

Test executed with: ./pegSerial --mode constantIncidence --min 100 --max 120 --increment 5 --incidenceAngle

88 --outputFile testOutput.txt --progressFile testProgress.txt --gratingType blazed --gratingPeriod 1

--gratingMaterial Au --N 15 --gratingGeometry 2.5,30 --eV --measureTiming

due to synchronization and communication. Due to the very small amount of information that needs to be

shared across processes (wavelength and grating parameters only), this approach could scale to use hundreds

of nodes in a distributed-memory cluster.

After achieving a baseline for the coarse-grained parallelization approach, it might be improved by sharing

some of the intermediate calculation steps across processes. For example, in a set of calculations on the same

grating profile, if the step-size in the y−direction was the same for each, the permittivity matrix M(y) could

be calculated just once and broadcast to all. If M(y) takes longer to compute than it does to broadcast, this

sharing would enable a better-than-linear speedup relative to the serial code.

3.3 Implementation Plan

The fine-grained approach requires substantially more inter-process communication than the coarse-grained

approach. Therefore, we implement it using the shared-memory paradigm and the OpenMP library. Based

on profiling results, we determine that any performance gained from Option 3 would not be sufficient to

make it worth attempting. Option 2 is impossible due to the selection of an adaptive step-size integration

algorithm, so we concentrate on implementing Option 1 (parallelization over trial solutions).

The coarse-grained parallelization lends itself naturally to distributed-memory computing, and so we

implement it using MPI. In section 5.6, we see that a hybrid execution model – using fine-grained distribution

over a small number of local processor cores, and coarse distribution over cluster nodes – takes advantage of

the inherent architecture of modern clusters and provides the ultimate theoretical performance.
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4 Project Deliverables

To meet the needs of the hypothetical users identified in Section 1.2.1, we defined the deliverables for the

project shown in Table 2. Given the ambitious nature of the list, the short-term deliverables (shown in

regular text) were considered critical to the in-class portion of the project; deliverables in italic text were to

be attempted over the long term.

Table 2: Short-term and long-term project deliverables, with status as of April 18, 2012.

Project Deliverable Status

1 Implement a serial version of the differential method, subject to the simplifying as-
sumptions in Section 2.1.

Complete structure;
incorrect results

2 Validate (or invalidate) the accuracy of this program, by comparison with a
commercially-available alternative.

Fails validation

3 Implement a parallel version using MPI that employs coarse-grained parallelization
over wavelength, suitable for running on the Westgrid distributed-memory cluster.
It should ensure input handling, checkpointing, and amalgamation of the calculated
efficiencies. Quantify the speedup of the MPI version over the serial version.

Complete; linear
speedup

4 Test whether performance can be improved by sharing intermediate calculation results
across processes in the MPI version.

Not possible with
current integration
method

5 Use OpenMP to explore fine-grained parallelization of the serial program, as described
in Section 3.1. Quantify the speedup.

Complete; linear
speedup

6 Test a hybrid fine + coarse-grained application on the Westgrid distributed-memory
machine bugaboo, and measure its performance.

Complete

7 Research and test alternatives to the shooting method for solving the boundary value
problem.

Incomplete

8 Build a user-friendly web-based GUI, so that beamline designers can access efficiency
modelling, optimization, and fitting tools through their web browser. The web-based
interface should enable users to

• set up calculations to run and validate their input,

• be notified when the calculations are finished, and

• visualize and interpret the results.

In progress

5 Project Outcomes and Discussion

Table 2 summarizes the outcomes for each deliverable, as of April 18, 2012. In this section, we provide details

of the work that was done in each. In general, the parallelization aspects of the project are considered highly

successful: nearly linear speedups are attained with both the coarse and fine-grained approaches, and the

coarse-grained parallelization proves to be scalable to hundreds of processors. Unfortunately, a bug in the

numerical solver currently produces incorrect, but consistent, results across all parallel and serial versions.
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5.0.1 Note on software engineering principles

The implementation of the project follows current best practices for software engineering: modularity, object-

oriented design, revision control, and in-place documentation. This allows the project to evolve quickly while

maintaining reliability, and enables other developers to get involved with the project at any point in time.

For example,

• The modular, class-based design decouples the different parts of the project, enabling quick testing and

replacement of specific components without affecting the others. For example, all of the numerical code

is contained within the solver module, which can be quickly replaced by a different implementation

without requiring changes to the serial and MPI main programs. Table 3 summarizes the function of

each module.

• The serial and MPI programs share all their common functions, support the same set of inputs, and

produce the exact same output. Because there is no duplicated code, bugs cannot be introduced by

making changes to one version but forgetting to make the corresponding changes in the other.

• The object-oriented design tends to promote reentrant functions without unintentional side effects

(e.g.: no modifications to global variables), which makes conversion to multi-threaded programming

much easier and safer.

• Revision control enables us to review the project history, for example, to see when bugs were intro-

duced/fixed, and how the program evolved from a single-threaded serial program to a multi-threaded

MPI program. Git is used for revision control, and a remote repository is hosted on Github.com.

All of the source code for the project can be browsed, downloaded or checked out from Github.com; a

revision history is also available:

Browse files: https://github.com/markboots/peg

Download: https://github.com/markboots/peg/zipball/master

Check out with git: git://github.com/markboots/peg.git

Revision history: https://github.com/markboots/peg/commits/master

5.1 Build a Numerical Solver Using the Differential Method [COMPLETE]

The numerical solver implements the simplified differential method as described in Section 2. While the

shooting method may not be the most robust boundary value solver, we know through comparison with

published results [2] and existing commercial software that it does produce accurate solutions for this partic-

ular problem domain. Therefore, we implement the first generation of the solver using the shooting method,

but structure the code so that it can be easily replaced by another implementation later.
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Table 3: The project is decoupled into four modules: PEG, PESolver, PEMainSupport, mainSerial, and
mainMPI.

Module / File Functionality

PEG.h/cpp Contains common structures for representing gratings / grating parameters and cal-
culation results

PESolver.h/cpp All of the numerical code for computing grating efficiency is contained in this module.
A single version provides both single-threaded and fine-grained parallel operation:
when constructed, you can specify the number of threads that should be used on
shared-memory machines with multiple cores.

PEMainSupport.h/cpp This modules provides common routines for parsing command-line input and format-
ting final output. These routines are used by both mainSerial.cpp and mainMPI.cpp.

mainSerial.cpp Creates the executable pegSerial, which accepts the command-line input shown in
Table 4, runs a set of independent grating calculations sequentially, and generates an
output file (Table 6).

mainMPI.cpp Creates an executable pegMPI suitable for running with mpiexec -n <np>. It accepts
the same input and produces the same output as pegSerial, but distributes the
calculations across <np> processors.

The solver code is responsible for the calculation steps shown in Table 1. We use the GNU Scientific

Library (GSL) [4] to represent complex numbers, vectors, and matrices. We also make use of its convenient

interface to the Basic Linear Algebra Subroutines (BLAS), and its implementation of ODE integration tools.

For integration of the trial solutions, we decompose the 2N+1 second-order differential equations (Equa-

tion 6) into 4N + 2 first-order equations; the real and imaginary components of these equations lead to a

total of I = 8N + 4 equations in the form:

dwi
dy

= f(y, w1, w2, . . . , wI) (18)

We solve this set using the Runge-Kutta-Fehlberg Method (RKF45), which provides adaptive step size

control through comparison of 4th and 5th-order Runge-Kutta approximations. (The RKF45 method was

chosen because it is known to be a reliable general-purpose integrator [4], and does not require an explicit

Jacobian; future work may suggest a more appropriate method.) Currently, we choose step sizes so that the

error estimate at each solution step is less than relative 0.1% in both the functions w and their first-order

derivatives dwi

dy . More work is required to determine the exact error tolerances that provide accurate solutions

within the shortest amount of time.

After all the trial solutions are integrated to produce un(a), we solve the linear system of Equation 14

using standard LU decomposition, which produces the An Rayleigh coefficients. The Bn coefficients are
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computed from Equations 44 and 12:

∑

p

(
A(1)
p unp(a)

)
−A(2)

0 exp(−iβ(2)
0 a)δn,0 = B(2)

n exp(−iβ(2)
n a) (19)

where the sum
∑
pA

(1)
p unp(a) can be computed using matrix multiplication [A]u. A this point we can

calculate the final efficiencies according to Equation 40.

5.1.1 Sequential version: main program pegSerial

The solver component accepts one grating structure and calculates one efficiency result structure. A main

program is necessary to handle input and output, and determine which calculations to run using the solver.

A sequential version of this main program, called pegSerial, is implemented in mainSerial.cpp. The

command-line program accepts input according to command-line arguments, and writes efficiency results

to an output file. Th program can optionally write and update a progress file while the calculations are

running; this allows other processes (such as a GUI or web interface) to monitor the status of the run (check

for failures, and see what fraction of the total calculations are finished).

The main program executes a series of calculations according to one of three operating modes:

1. In constantIncidence mode, the program calculates the efficiency of a grating over a range of wave-

lengths (or photon energies) at a constant incidence angle.

2. In constantIncludedAngle mode, the incidence angle is varied automatically as a function of wave-

length, to satisfy a condition of a constant deviation angle from the incident light to the outgoing order

n. (This represents the operating mode of many monochromator designs.) The incidence angle θin is

computed from the grating equation (1) and the criteria that the included angle φ = θin + θout:

θin = arcsin

( −nλ
2d cos(φ/2)

)
+ φ/2 (20)

3. In constantWavelength mode, the program calculates the efficiency over a range of incidence angles,

at a constant wavelength.

These modes allow beamline designers produce efficiency curves corresponding to three common scenarios

with a single command.

Table 4 lists the program’s command-line arguments, which specify the grating parameters, incidence,

and calculation input. Sample output describing the output file format is shown in Table 6.
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Table 4: Input Specification (Command-line Arguments) for the pegSerial and pegMPI programs.

Required

Grating Specification:

--gratingType One of: [rectangular blazed sinusoidal trapezoidal]
--gratingPeriod [grating period in um]
--gratingGeometry [command-delimited list of geometry parameters, in um and/or degrees]

Rectangular profile: depth,valley width
Blazed profile: blaze angle,anti-blaze angle
Sinusoidal profile: depth
Trapezoial profile: depth,valley width,blaze angle,anti-blaze angle

--gratingMaterial [grating substrate material]: This should be a name corresponding to a refractive
index database filename, ex: Au, Ni, C, SiO2, etc.

--N [truncation index]: Specifies the number of positive and negative orders to include in
the Fourier expansion. Will also determine the number of orders that are calculated,
although if you only want to calculate 3 orders, you will still need a much larger
truncation index for accurate results. In the soft x-ray range, convergence is usually
attained with N 15..45.

Operating Mode:

--mode One of: [constantIncidence constantIncludedAngle constantWavelength]
--min [min]
--max [max]
--increment [increment]

Required, depending on the mode:

--incidenceAngle [incidence angle in degrees]
--includedAngle [deviation angle in degrees]
--toOrder [diffraction order for the included angle]
--wavelength [wavelength in um]

In constant incidence mode, a calculation is performed for wavelengths from --min to
--max in steps of --increment, at a fixed incidence angle given by --incidenceAngle.
In constant included angle mode, the incidence angle is calculated at each wave-
length to ensure a constant included angle of --includedAngle between the incident
light and the order specified in --toOrder. This is the operating mode for many
monochromators. (Inside orders are negative, outside orders are positive.)
In constant wavelength mode, a calculation is performed for incidence angles
from --min to --max in steps of --increment, for a fixed wavelength given by
--wavelength.

Output:

--outputFile [file name]: The calculation output will be written to this file.

Optional

--progressFile [file name]: If provided, the current status of the calculation will be written in this
file; it can be monitored to determine the progress of long calculations. This provides
an interface for other processes to monitor the status of this calculation (for example,
a web-based or GUI front-end, etc.).

--eV If this flag is included, all wavelength inputs (–min, –max, –increment, and –
wavelength) will instead be interpreted as photon energies in electron volts (eV).

--printDebugOutput If this flag is included, each calculation will print intermediate results to standard
output.
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5.2 Validate the Solver [INCOMPLETE]

The solver is complete in the sense that it includes all steps in the differential method calculation. Unfortu-

nately, due to a bug (or bugs) that have yet to be identified, it does not produce correct results. Validation

against the commercial software is not necessary, because the results fail the conservation of energy test: for

some calculation instances, the 0-order efficiency is greater than 1. (For lossless gratings with no absorption,

the sum of all the efficiencies must be 1 to satisfy conservation of energy.) Additionally, the calculated

efficiencies change inappropriately over small changes in wavelength; examples are shown in Table 5.

Table 5: Efficiency results for a gold grating, blazed at 2.5 degrees, with a groove period of 1 µm, at 88◦

incidence. The results are consistent from run-to-run but incorrect, as can be seen in the 0-order efficiencies
> 1. The outside orders (not shown) are all 0, which is correct since there are no propagating outside orders
at 88◦ incidence.

Order Efficiency at photon energy (eV)

100 105 110 115 120

0 1.0115 0.667446 1.57674 1.02805 0.706105
-1 1.01E-04 1.29E-03 2.19E-03 1.25E-04 1.06E-03
-2 3.47E-05 4.21E-04 7.67E-04 4.29E-05 3.44E-04
-3 1.80E-05 2.06E-04 4.04E-04 2.21E-05 1.69E-04
-4 1.08E-05 1.16E-04 2.48E-04 1.32E-05 9.53E-05
-5 6.86E-06 6.86E-05 1.60E-04 8.38E-06 5.67E-05
-6 4.38E-06 3.91E-05 1.01E-04 5.40E-06 3.38E-05
-7 3.61E-06 1.57E-05 4.52E-05 3.42E-06 1.89E-05
-8 1.96E-06 2.89E-05 8.67E-05 3.03E-06 7.57E-06
-9 1.16E-06 1.24E-05 4.04E-05 1.42E-06 1.50E-05
-10 6.42E-07 6.07E-06 2.36E-05 7.69E-07 5.43E-06
-11 3.17E-07 2.71E-06 1.33E-05 3.76E-07 2.29E-06
-12 1.26E-07 9.95E-07 6.86E-06 1.50E-07 8.25E-07
-13 3.15E-08 2.82E-07 2.98E-06 3.72E-08 2.35E-07
-14 2.02E-09 1.55E-07 9.21E-07 1.59E-09 1.29E-07
-15 1.33E-08 3.10E-07 1.16E-07 1.34E-08 2.54E-07

This issue must be resolved for the project to be useful. Work in this area is ongoing, but it is difficult to

predict how long it will take. Given that parallel computing is the explicit focus for this course, we decided

that it was important to ensure we addressed the parallel component of the project even before resolving

this issue. Because the structure of the solver is complete, the time complexity is representative of the

proper solution, and the results are consistent, we can proceed with both fine-grained and coarse-grained

parallelization of the solver. Since this is a flaw in the mathematical implementation – not the structure of

the algorithm – we have confidence that the parallelization strategies will remain applicable once this issue is

resolved. Finally, the consistency of the results from run-to-run allows us to confirm that the parallelization

modifications do not alter the results.
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Table 6: Output file format for the pegSerial and pegMPI programs. The Input section restates the program
input, the Progress section is updated as the calculation completes, and each row of the Output section lists
the independent variable (wavelength, eV, or incidence angle, depending on the mode) followed by the
calculated efficiencies for all orders from −N to N .

# Input
mode=cons tant Inc idence
inc idenceAng le=88
un i t s=eV
min=100
max=120
increment=5
gratingType=blazed
gra t ingPer i od=1
gratingGeometry =2.5 ,30
g ra t ingMate r i a l=Au
N=15
# Progres s
s t a t u s=succeeded
completedSteps=5
t o t a l S t e p s=5
# Output
100 1.33437 e −08 ,2.01772 e −09 ,3.14758 e −08 ,1.26258 e −07 ,3.16875 e −07 ,6.42301 e

−07 ,1.15956 e −06 ,1.96424 e −06 ,3.60516 e −06 ,4.37926 e −06 ,6.85693 e −06 ,1.07995 e
−05 ,1.80188 e −05 ,3.47459 e −05 ,0.000100891 , 1 . 0115 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

105 3.10432 e −07 ,1.55365 e −07 ,2.82109 e −07 ,9.94978 e −07 ,2.7072 e −06 ,6.06691 e
−06 ,1.24446 e −05 ,2.89393 e −05 ,1.56923 e −05 ,3.91265 e −05 ,6.86083 e
−05 ,0 .000116368 ,0 .000206277 ,0 .000420725 ,0 .00129465 ,
0 . 667446 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

110 1.16288 e −07 ,9.20616 e −07 ,2.97772 e −06 ,6.85694 e −06 ,1.33289 e −05 ,2.35907 e
−05 ,4.04132 e −05 ,8.6704 e −05 ,4.52472 e
−05 ,0 .000100956 ,0 .000160452 ,0 .000247542 ,0 .000404021 ,0 .000767342 ,0 .00219208 ,
1 . 57674 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

115 1.33797 e −08 ,1.59323 e −09 ,3.72418 e −08 ,1.49557 e −07 ,3.76447 e −07 ,7.69366 e
−07 ,1.42177 e −06 ,3.03323 e −06 ,3.41893 e −06 ,5.4017 e −06 ,8.37909 e −06 ,1.32201 e
−05 ,2.21424 e −05 ,4.28869 e −05 ,0.000125008 , 1 . 02805 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0

120 2.54404 e −07 ,1.29081 e −07 ,2.35166 e −07 ,8.24594 e −07 ,2.28514 e −06 ,5.43443 e
−06 ,1.49531 e −05 ,7.57429 e −06 ,1.89261 e −05 ,3.38267 e −05 ,5.67474 e −05 ,9.52516 e
−05 ,0 .000168523 ,0 .000344133 ,0 .00106247 , 0 . 706105 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0
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5.3 Parallelize Over Calculations using MPI (Coarse) [COMPLETE]

To implement the coarse parallelization of calculations over wavelengths or incidence angles, we create a

“drop-in” replacement for pegSerial that is suitable for running in the SPMD (same program, multiple

data) context using MPI. We seek to maintain the same format for the input command-line arguments and

for the output file.

Because all of the calculations are independent, this is an “embarrassingly” parallel problem. However, we

still encountered some important decisions on how to distribute the calculations, structure the flow control,

and communicate the results. We considered several alternatives:

1. In the Server/Worker approach, the root process does no calculations, but simply receives and amal-

gamates results broadcast from other (“worker”) processes. The other processes are free to continue

with subsequent calculations as soon as they finish previous ones, and do not need to be synchronized.

• Advantages: This approach allows reporting real-time progress and results, and it keeps the worker

processes busy 100% of the time.

• Disadvantages: It wastes the computational power of the root process, which must be available

at all times to receive completed reports. This may not be significant when running on hundreds

of processors, but it would be a significant inefficiency when running on small clusters.

2. In the Share At End approach, each process determines which calculations to run, and stores the

results until all are complete. Once all processes are finished, all of the results are gathered back to

the root process.

• Advantages: This approach harnesses the power of all processes (including the root), and does

not force the processes to synchronize after each calculation.

• Disadvantages: No progress feedback or intermediate results can be made available (for example,

to a GUI or web interface).

3. In the Share At Every Step approach, all processes complete one calculation and gather the results

onto the root process before proceeding with their next calculation.

• Advantages: This approach enables progress updates and intermediate results, while harnessing

the power of the root process.

• Disadvantages: The gather operation after every calculation forces synchronization of the pro-

cesses. If one machine finishes its calculation before the others, it must sit idle until all others

also finish. This inefficiency can be mitigated by using a cyclic partition, so that concurrent
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calculations will likely have have similar inputs, and therefore require a similar amount of time

(assuming all processing nodes have comparable performance).

Three reasons motivate us to implement Option 3:

(a) We anticipate that the long-term solution will run on small clusters of 8 - 32 processors (such as

one High Performance node in Amazon’s EC2 platform); in this case, we want to make efficient

use of all processes. Westgrid clusters like bugaboo could theoretically provide access to hundreds

(thousands) of processes, but in practice, the queue waiting times associated with a request

for that many simultaneous processes always make this option slower than running on fewer

immediately-available processors.

(b) For the web-based user interface, progress updates and intermediate results are important.

(c) We expect that calculations on a single grating over a narrow wavelength range will take essentially

the same amount of time to run.

5.3.1 Parallel version: main program pegMPI

Implementation of Option 3 is straight-forward, according to the following algorithm:

Each parallel instance of the program receives the same command-line input arguments, and determines

for itself (using a cyclic partition) which calculations to run. After each calculation, an MPI Gather operation

communicates the results from every process back to the root node. This allows the root node to update the

output file sequentially as calculations are completed, rather than only once all are finished. (A GUI or web

interface could exploit this to display intermediate results.) For example, when running on four processes,

the first write to the output file contains the results for the first four wavelengths; every subsequent gather

adds four more lines to the file.

Instead of using custom MPI types to communicate the result structure, we optimize the MPI Gather

operation by sending a flat double array. Internally, solver results are represented using a PEResult structure,

containing:

• A result status code (int)

• The wavelength (double)

• The incidence angle (double)

• A vector of efficiencies, from [−N,N ] (std::vector<double>)

For communication, we copy this into a flat MPI_DOUBLE array containing the following elements:

• The result code
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• The wavelength

• The incidence angle

• The truncation index N (used to determine the size)

• The efficiencies, in order from [−N,N ]

Testing shows that this method, using memcpy() to copy the efficiencies from the vector to the array, is faster

than communicating a custom MPI structure.

The resulting SPMD program pegMPI is executed using mpiexec: (This example uses 8 processors.)

mpiexec −n 8 . / pegMPI −−mode cons tant Inc idence −−min 100 −−max 120 −−increment 5 −−

inc idenceAng le 88 −−outputF i l e testOutput . txt −−p r o g r e s s F i l e t e s t P r o g r e s s . txt −−

gratingType blazed −−gra t ingPer i od 1 −−g ra t ingMate r i a l Au −−N 15 −−

gratingGeometry 2 .5 , 30 −−eV

5.3.2 Deploying on Westgrid’s bugaboo

The Westgrid cluster bugaboo is a distributed-memory cluster with 4584 cores and a fast interconnect

(Infiniband), which we use to test the performance and scalability of our MPI parallelization. The software

libraries pre-installed on the cluster include GSL, which allows us to compile both pegSerial and pegMPI

without modification. The MPI version must be built using the mpic++ compiler wrapper, which on bugaboo

is an interface to the optimized Intel C++ compiler instead of the GNU compiler. We provide a modified

makefile (Makefile.bugaboo) suitable for compiling the project in this environment.

Because bugaboo is a shared resource, jobs are submitted through a queue system (called PBS) and

executed using the TORQUE scheduler. The file run/mpi.pbs provides an example of a shell script that can

be used to submit our test program. The number of processors can be controlled by modifying the script,

or supplying an argument when submitting the job to the queue:

qsub − l procs=32 mpi . pbs

5.3.3 Parallel Performance

We test the parallel performance of pegMPI on bugaboo with a run involving 32 separate calculations, using

1 to 32 processors. Each test was repeated 30 times, and we report the minimum run time achieved over

those tests as the theoretical parallel performance. (Details for all tests are included in Appendix B.) The

results in Table 5.3.3 show that we have attained a nearly linear speedup, as should be expected for such an

embarrassingly-parallel application. The efficiency decreases slightly as we go to 32 processes. (We attribute
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this decrease partially to increased communication, but mostly due to idle time caused by synchronization

of the SPMD instances after each calculation.)

Testing on larger problem sizes with more processors shows a speedup of 97.2 and an efficiency of 0.76%

when going to 128 processors. In practice, when considering wait times in the bugaboo queue, it is always

faster to request fewer processors as they become available rather than waiting for large blocks of simultaneous

processors. (For example, we waited four hours to get access to 128 processors, just to run a 2.7 second

program.)

Table 7: Run time, speedup, and efficiency attained using the MPI coarse-grained parallel program pegMPI,
on bugaboo

Processes P : 1 2 4 8 16 32

Run time (s) 62.63 31.05 15.55 7.92 4.01 2.15
Speedup 1.00 2.02 4.03 7.91 15.63 29.15

Efficiency 1.00 1.01 1.01 0.99 0.98 0.91

Test format: mpiexec -n P ./pegMPI --mode constantIncidence --min 100 --max 131 --increment 1 --incidenceAngle

88 --outputFile "output/${DATE}.txt" --progressFile "output/progress${DATE}.txt" --gratingType blazed

--gratingPeriod 1 --gratingMaterial Au --N 15 --gratingGeometry 2.5,30 --eV

The measurements for 2 and 4 processes show an efficiency slightly greater than 1; however, it should be

noted that this is simply the result of randomness in the timing measurements. The pegMPI program has

no possible mechanism for exceeding an ideal efficiency of 1.0.

5.4 Explore Sharing Intermediate Calculation Results [INAPPLICABLE]

Profiling measurements show that computation of the M(y) matrix at each integration step (Equation 7) is

the most time-consuming part of the solution. Because the current integration method uses a dynamic step

size, we cannot predict in advance exactly which y values will be required, so we cannot directly implement

this aspect of the project.

Even though the integration grid is dynamic, we expect that the program is spending lots of time cal-

culating Fourier expansions for the grating impedance step function at nearly identical y−values. This

duplication occurs at two levels: across trial solutions within a single calculation, and across multiple cal-

culations that use the same groove geometry. In the future, we will examine if we can achieve acceptable

accuracy by interpolating a shared lookup table of grating expansions (on a fixed grid of y values). (To

do this experiment, we first need an accurate, working version of the solver.) We will also test different

integration methods that – like the commercial reference implementation – use a fixed step size. Both of

these strategies could substantially increase the performance. Sharing this step of the calculation across
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MPI nodes would create the rare situation where a parallel implementation has to do less work than the

equivalent serial implementation.

5.5 Parallelize Over Trial Solutions using OpenMP (Fine) [COMPLETE]

Table 1 shows that almost all of the serial program’s run time occurs within the integration of trial solutions.

Taking advantage of their independence, we successfully parallelize a single calculation via the shared-memory

paradigm using OpenMP directives.

Two sections of the solver routine can be converted into parallel for loops. The first section distributes

calculation of the αn, β
(2)
n , and β

(1)
n constants for each Fourier index n. More importantly, the second section

distributes the initialization and integration of the trial solutions.

We find it relatively easy to accomplish the fine-grained parallelization for several reasons:

1. The shooting method offers a naturally parallel structure, due to the independence of the trial solutions.

2. We designed the serial version of the solver to be easily multi-threaded, by (a) avoiding the use of

global memory, (b) creating reentrant functions, and/or (c) clearly identifying which variables were

read and modified by each function. In the multi-threaded version, only one shared memory structure

needed to be replaced with per-thread instances.

3. Our solver is an ideal example of the “incremental parallelism” scenarios that OpenMP was designed

for: converting an existing serial program with a minimum amount of added code.

Because we implement this parallelization within the solver itself, it is available to both the pegSerial

and pegMPI programs. We add one more command-line option to the input specification for both programs,

so that users can specify the number of threads to use (--threads). If omitted, the solver runs in single-

threaded mode, which provides an easy way to validate the correctness of the multi-threaded version.

5.5.1 Parallel Performance

We test the performance of pegSerial using the --threads option on bugaboo, where nodes can offer up

to 8 processors per node. Using the same tests as for pegMPI, Table 5.5.1 shows that we also attain a nearly

linear speedup using this method. The efficiency at 8 nodes is just slightly under 90%..
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Table 8: Run time, speedup, and efficiency attained using the OpenMP fine-grained parallel option, on a
single bugaboo node with 8 processors

Threads t: 1 2 4 8

Runtime (s) 58.78 31.85 16.20 8.34
Speedup 1.00 1.85 3.63 7.05

Efficiency 1.00 0.92 0.91 0.88

Test format: ./pegMPI --mode constantIncidence --min 100 --max 131 --increment 1 --incidenceAngle 88

--outputFile "output/${DATE}.txt" --progressFile "output/progress${DATE}.txt" --gratingType blazed

--gratingPeriod 1 --gratingMaterial Au --N 15 --gratingGeometry 2.5,30 --eV --threads t

5.6 Test Hybrid Fine + Coarse-grained Application on Westgrid’s bugaboo [RE-

SULTS PENDING]

Because the fine-grained option is implemented within the solver, we can access it within pegMPI as well.

This allows us to test a hybrid application that uses fine-grained parallelization across processors within a

cluster node, and coarse-grained parallelization across nodes.

We repeat the same test program that we used for the pure MPI and pure OpenMP tests, but this time

we request 4 nodes with 8 processors per node, for a total of 32 processors. We run 4 instances of the MPI

program, using 8 threads each.

We expect that the run time for this test should be comparable to the OpenMP timings with an efficiency

near 90%. However, results for this test are still pending: we have been waiting several days for it to move

through the job queue on bugaboo. This introduces practical reasons why using the hybrid mode is not

advised on a shared resource like the Westgrid clusters.

5.6.1 Scheduling Considerations

The coarse-grained parallelization is slightly more efficient and scalable than the fine-grained option. There-

fore, whenever the number of independent calculations (i.e., number of wavelength points to calculate)

is larger than the number of available processors, there is no reason to prefer the fine-grained or hybrid

approach.

When running on shared clusters like bugaboo, there is an even more important reason for avoiding the

fine-grained option: to run effectively with t threads, we require t simultaneously-available processors on the

same node. This means that the scheduler, instead of simply grabbing the first P available processors on

any set of nodes, must find P/t nodes that all have t processors available. In practice, the time spent waiting

in the scheduler’s queue almost always exceeds the actual run-time of the program, and the requirement for

t simultaneous free processors per node is guaranteed to increase this wait.
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However, there are three situations where the fine-grained option is clearly beneficial:

1. When the number of independent calculations is less than the number of available processors. The

fine-grained option always provides the fastest way to receive a single answer.

2. In future (hypothetical) grating optimizations that use serial minimizers. In this case, the minimizer

must compute a small number of efficiency values before moving onto the next step, and we want to do

this as fast as possible. This would be part of a long-running optimization program, so the additional

queue waiting time to request 8 processors per node would be less significant.

3. When running local calculations on a personal workstation with a multi-core processor. As we reach

physical processor speed limits, the direction of processor evolution, even for home machines, will be

toward many-core systems.

As a real-world example, we find that under current usage conditions, it takes several days for the bugaboo

scheduler to find 4 nodes with 8 free processors, but it only takes a few hours to find any combination of 32

free processors for a single-threaded MPI run.

However, if we had dedicated access to a small number of multi-core processors (for example, several

Amazon EC2 compute nodes), the hybrid application would offer the best real-time performance on short

calculation sets.

5.7 Research and Test Shooting-Method Alternatives [INCOMPLETE]

The shooting method offers four advantages:

1. The literature confirms that it provides accurate solutions to the types of grating problems we are

interested in.

2. It is easily parallelized.

3. It is used by commercial grating software, which we hope to use in validating our own implementation.

4. It is easily integrated with the S-matrix propagation method to handle stacks of grating layers [10, Ch.

3], which is an important feature in future versions of the solver.

In general, however, the shooting method is not as robust as more recent boundary-value methods.

Replacing the shooting method with a modern BVP solver could possibly allow us to solve exotic grating

problems that do not converge using the conventional differential method (such as gratings with very deep

grooves). Work on this component of the project will be started after we complete a working version of the

conventional solver.
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5.8 Build a User-Friendly Web-Based UI [IN PROGRESS]

It us unreasonable to expect all of our hypothetical users to have access to Westgrid or another cluster, and

knowledge of how to submit jobs using the queue system. To make our software accessible to users, we need

a web-based user interface that will allow them to:

• set up calculations to run, and validate their input,

• be notified when the calculations are finished, and

• visualize and interpret the results.

In the past, we have developed a web-based front-end for the commercial grating software. Example

screenshots of the three key features are shown in Figure 6 and 7. We are currently adapting this interface

to support the new solver using pegMPI on Westgrid as the back-end.

We designed the two main programs pegSerial and pegMPI to be easy to run and monitor from a third

process. All of the necessary inputs can be expressed on the command-line, and both programs write a file

that can be monitored to check the progress of a set of calculations. We can access their results by simply

opening the output files. This makes them easy to integrate with a GUI front-end.

One complication in this aspect of the project is the amount of time it takes for each job to proceed

through the work queue. Although our parallel execution is much faster than the commercial serial program,

it currently takes several hours for a job to be accepted on bugaboo, and this eliminates the parallel advantage

for most users. Additionally, the old interface requires a browser connection to be maintained as long as

a calculation is running; to use the Westgrid queue we instead need a way for users to submit jobs online,

close their browser, and then come back to check on the status of those jobs.
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Figure 6: This web application provides a graphical user interface for submitting grating efficiency calcula-
tions.
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4

Figure 7: This web application provides a graphical user interface for calculating grating efficiencies. The
results are plotted, and users can download a text-based table for further analysis. Work is ongoing to adapt
this interface to the Westgrid back-end.
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6 Conclusion

The scientific demand for high-intensity soft X-ray research instruments is making it essential for beamline

designers to incorporate grating efficiency prediction and optimization into their designs. This project takes

a significant first step toward making these calculations fast, feasible, and accessible.

As of April 18, we successfully complete all of our primary deliverables, with the notable and serious

exception of correct numerical results from the solver. Having chosen intentionally to focus on the parallel

programming aspects of the project, we achieve coarse-grained parallelization using MPI, and also achieve

one of our secondary deliverables: fine-grained parallelization of a single calculation using OpenMP. Both of

these methods produce nearly linear parallel speedups; the coarse grained method achieves slightly higher

efficiency (0.91 at 32 processors) than the fine-grained method (0.88 at 32 processors). Even though the

solver produces incorrect results, we know from the consistency of these results that our parallelizations

are correct. We also have a high degree of confidence that both methods will remain applicable once the

numerical problems in the solver are resolved.

In the course of the project, we encounter several practical learnings on parallel computing:

• Even “embarassingly parallel” problems require some thought to design them for maximum efficiency,

and to balance this against other feature requests (such as real-time output).

• Shared high-performance resources like Westgrid provide incredible computing power over the period

of time that you have access to them. However, the time spent waiting for this access may far outweigh

the speedup attained with parallelization. While Westgrid may be ideal for long-running calculations

that would not be feasible on a smaller machine, we need to find another platform to provide our users

with access to the immediate results that will encourage them to experiment and explore.

Having accomplished as much as we have, we remain committed to evolving this project into a production-

ready tool with an intuitive user interface, accurate real-time results, and powerful optimization and fitting

features. The success of this vision will be measured in the scientific outcomes from the next generation of

soft X-ray instruments around the world.
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A Detailed formulation of the grating problem

A.1 Basics of light: electromagnetic field and polarization

In Figure 5, incoming light strikes the grating along wavevector k2 at an angle θ2 from perpendicular to the

grating plane.

k2 = v2
ω

c

(
sin θ2î− cos θ2ĵ + 0k̂

)
(21)

(We use v to designate the refractive index – in this case, in Region 2 above the grating, which is normally

air or vacuum. ω = 2πf is the angular frequency of the light, and c is the speed of light in vacuum.)

The incoming light is a travelling electromagnetic plane wave; this means it contains orthogonal electric

and magnetic fields that both have a sinusoidal dependence on time. We can express the incident electric

field vector Eincident using the complex exponential form:

Eincident = A exp (i(k2 r − ωt)) = A exp (i k2(x sin θ2 − y cos θ2)) exp (−iωt) (22)

where the true (physical) field is contained in the real part. Since all fields will have the same harmonic

dependence on time, we drop the e−iωt factor from here on. (The scalar k2 is simply the magnitude of k2,

i.e.: |k2| = v2 ω/c.)

The electric field vector is always perpendicular to the direction of the wave k2. With our assumption on

TE polarization, it must also be parallel to the z−axis, so the polarization vector A = ẑ. The magnetic field

vector, ignored so far, can always be computed if we know the electric field and the direction of propagation,

because it must be perpendicular to both. For a pure TE wave, the Ex, Ey, and Bz field components are

always 0.

A.2 Maxwell’s Equations

Maxwell’s equations describe the relationship between electric fields, magnetic fields, charge, and current.

For our simplified problem, the relevant two equations expressed in differential form are:

∇×E = −∂B
∂t

(23)

∇×B = µε
∂E

∂t
(24)
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For sinusoidal time-varying fields, the electric field E is proportional to e−iωt, so the time derivatives reduce

to:

∇×E = iωµH (25)

∇×H = −iωεE (26)

By expressing these vector equations in Cartesian coordinates, exploiting the fact that all derivatives with

respect to z are 0, and solving the remaining equations simultaneously, we can derive a second-order wave

equation for the z−component of the electric field. This is the fundamental equation we need to solve:

∇2Ez + k2(x, y)Ez = 0 (27)

This equation describes not just the incident field, but also the total field above the grating, which is the

sum of the incident and reflected waves. From here on, when we refer to the electric field, we are implicitly

referring to the z component of the total field, since Ex = Ey = 0.

In general, k = k(x, y) is a complicated function of position; since it varies with the refractive index, it

depends on whether we are inside or outside of a groove valley, or above or below the modulated region.

However, in the homogenous space above (Region 2) and below the grooves (Region 1), k is constant, so

Equation 2 reduces to the Helmholtz equation:

∇2Ez + k2Ez = 0 (28)

A.3 Representing the grating

The grating is described by the profile function yp = g(x), which has a minimum of y = 0, a a maximum

y = a, and is periodic on d:

yp = g(x) = g(x+ d) (29)

The profile is required to determine k as a function of position. For a profile of any arbitrary height, at any

height 0 < y < a, k will be a periodic step function going from k1 = v1ω/c to k2 = v2ω/c. We can then

determine a Fourier expansion for k2 that applies inside the grooves, where the coefficients k2n(y) are still
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functions of vertical position:

k2(x, y) =

∞∑

n=−∞
k2n(x, y) e2πinx/d (30)

A.4 Representing the total field: The Fourier basis

The periodicity of the grating suggests a Fourier expansion might also work to represent the total electric

field. A true periodic function would have the form u(x, y) = u(x + d, y). Although this is not the case,

there is a clever proof that shows the field obeys the pseudo-periodic relationship:

Ez(x+ d, y) = eik2d sin θ2Ez(x, y) = eiα0dEz(x, y) (31)

where we have defined α0 ≡ k2 sin θ2. Therefore, we can represent the total field with a pseudo-Fourier

expansion over x:

Ez(x, y) =

∞∑

n=−∞
un(y)eiαnx (32)

where αn ≡ α0 + 2πn/d. This is the Fourier basis for the total field, with an infinite number of Fourier

coefficients un(y) that are functions of vertical position. It is exact when n goes to infinite, but we will

obviously need to truncate the expansion to a maximum index n = N when working with it numerically.

A.5 Boundary conditions: Above and below the grooves:

For this boundary-value problem, we need to derive the boundary conditions that apply above and below

the grating grooves. In these homogeneous regions, it is possible to insert the field expansion (Eqn. 32) into

the wave equation (Eqn. 28) and solve it analytically. The result for the Fourier coefficients is:

un(y) = Ane
−iβny +Bne

iβny (33)

where

βn =
√
k2 − α2

n (34)

and An and Bn are unknown constants to be determined by (additional) boundary conditions. Special

attention must be paid to the square root for βn, depending on whether we are above or below the grating:
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A.5.1 Above the grating (Region 2)

Above the grating, we are likely inside air or vacuum (k = k2), so the refractive index and k would be real.

Since αn = α0 + 2πn/d will increase with n, there will be a finite number of n near n = 0 where (k2 − α2
n)

will be a positive number. However, there will be an infinite number of n (as n→∞ and n→ −∞) where

(k2 − α2
n) < 0. This creates two possibilities for βn (which we label β

(2)
n because we are in Region 2):

β(2)
n =

√
k2 − α2

n (k2 − α2
n) > 0 (finite occurrences, β(2)

n real) (35)

β(2)
n = i

√
α2
n − k2 (k2 − α2

n) < 0 (infinite occurrences, β(2)
n complex) (36)

Using this solution for the Fourier coefficients un, the total field is:

Ez(x, y) =

∞∑

n=−∞
A(2)
n eiαnx−iβ(2)

n y +

∞∑

n=−∞
B(2)
n eiαnx+iβ

(2)
n y (37)

The total field created above the grating is therefore a finite sum of propagating plane waves (for all n

where β
(2)
n is real), and an infinite sum of decaying plane waves (when β

(2)
n is complex). The sum with

A
(2)
n coefficients represents waves travelling in the −y direction, down toward the grating. Similarly, the sum

with B
(2)
n coefficients represents waves travelling away from the grating, in the +y direction. For the latter,

there is a finite set of propagating waves, and an infinite set of exponentially decaying waves that tend to

zero as y → +∞.

The total field will have a unique solution only when the incident field is specified. By identifying the

A0 term with the single incident plane wave in Figure 5, we end up with this expansion, which provides the

boundary values for the field above the grating:

Ez(x, y) = A
(2)
0 eiα0x−iβ(2)

0 y +

∞∑

n=−∞
B(2)
n eiαnx+iβ

(2)
n y (38)

Note: The diffraction grating’s reflected orders appear out of this expansion as the finite set of n, β
(2)
n ,

and B
(2)
n values that create propagating plane waves travelling away from the grating. At this point, n

can now be properly identified with the diffraction order. This is known as the Rayleigh Expansion for the

diffraction field. (Rayleigh assumed this solution, but did not prove it, in Ref. [15].)
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A.5.2 Below the grating (Region 1)

The field below the grating (y < 0) can be expanded using the same technique. One complication is that

for grating materials that absorb energy, the refractive index (and hence k = k1) will be complex.5 In this

situation there are two possibilities for the square root β
(1)
n =

√
k21 − α2

n; the correct choice can be made by

requiring that the diffracted waves remain bounded when y → −∞. The result provides the boundary-value

expansion for the transmitted field, corresponding to the transmitted orders.

Ez(x, y) =

∞∑

n=−∞
A(1)
n eiαnx−iβ(1)

n y (39)

A.6 Connecting the Fourier basis to the efficiency

All soft X-ray gratings are used in reflection, so we are interested in the reflected orders. Since the Rayleigh

Expansion terms correspond to a plane wave for each order, the power in that plane wave, and thus the

efficiency in that order, can be related to the unknown coefficients. By choosing a unit intensity for the

incident wave A0, the efficiency in the reflected order n is

e(r)n = B(2)
n B(2)∗

n

β
(2)
n

β
(2)
0

(40)

Therefore, we need to determine the Fourier coefficients Bn to compute the efficiency. This requires address-

ing the non-analytic field inside the grooves.

A.7 Matrix Formulation of Numerical Solution: Inside the Groooves

When we put the Fourier expansions for Ez (Eqn. 32) and k2 (Eqn. 30) into the general wave equation

(Eqn. 27) and truncate to n = [−N,N ], we get one second-order differential equation for every n:

d2un(y)

d2y
+

N∑

m=−N
k2(n−m)(y)um(y)− α2

nun(y) = 0 (41)

This is conveniently expressed by defining the column vector [u(y)] with 2N + 1 components un(y), and the

(2N + 1)× (2N + 1) square matrix M as

Mnm(y) = −k2(n−m)(y) + α2
n δnm δnm =





1, if n = m

0, if n 6= m
(42)

5In fact, this is the case for all materials at soft x-ray wavelengths.
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giving the matrix equation

d2 [u(y)]

dy2
= M(y) [u(y)] (43)

This is now a set of second order differential equations in y that need to be solved so that the values of the

field coefficients un(y) satisfy boundary conditions at the top and bottom of the grooves: y = a and y = 0.

A.8 Boundary conditions at the top and bottom of the grooves

Regardless of the shape of the profile, it will always have a maximum value at y = a, and a minimum value

at y = 0. The laws of electromagnetism provide two additional boundary conditions here:

1. The tangential component of the electric field E must be continuous at an interface.

For TE polarization, the tangential component is just the Ez component, so we require that the electric

field is continuous at y = 0 and y = a. Therefore, the field must match up to the Rayleigh expansion

solutions found for Region 2 and Region 1:

un(a) = A
(2)
0 e−iβ

(2)
0 aδn,0 +B(2)

n eiβ
(2)
n a (44)

un(0) = A(1)
n (45)

Unfortunately, both the An and Bn coefficients are still unknown.

2. The tangential component of the magnetic field H must be continuous at an interface.

In TE polarization, the tangential magnetic field is proportional to the normal derivative of the electric

field. At y = a and y = 0, regardless of the profile shape, the normal vector to the grating surface will

be along the y−direction, so we need dEz/dy to be continuous; this gives the remaining two boundary

conditions:

dun(y)

dy

∣∣∣∣
y=a

= −iβ(2)
0 A

(2)
0 e−iβ

(2)
0 aδn,0 + iβ(2)

n B(2)
n eiβ

(2)
n a (46)

dun(y)

dy

∣∣∣∣
y=0

= −iβ(1)
n A(1)

n (47)
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These four requirements can be combined to give two equations that link the function un(y) to its

derivative at y = 0 and y = a.

dun(y)

dy

∣∣∣∣
y=0

= −iβ(1)
n un(0) (48)

dun(y)

dy

∣∣∣∣
y=a

=





iβ
(2)
n un(a) (n 6= 0)

−iβ(2)
0 A

(2)
0 e−iβ

(2)
0 a + iβ

(2)
n

(
un(a)−A(2)

0 e−iβ
(2)
0 a
)

(n = 0)
(49)

These two boundary equations, along with the matrix wave equation (Eqn. 43), establish the grating

boundary value problem in the Fourier space.
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B Performance Testing Results

B.1 MPI Timing Results

Coarse'grained,Parallelization,with,MPI

Submit'with'*l'procs'='<P>''(Do'not'enforce'all'on'same'node)

Comm.'Slower'on'this'day: Using'128'calculation'points:
Processors: 1 2 4 8 16 32 32 128

62.917 31.255 15.676 8.055 4.019 2.342 2.460 2.797
62.632 31.278 15.617 8.035 4.032 2.035 2.416 2.762
62.752 31.251 15.651 7.994 4.026 2.150 2.149 2.728
62.719 31.202 15.648 8.012 4.035 2.258 2.463 2.751
69.354 31.509 15.584 8.018 4.012 2.159 2.505 2.577
62.819 31.394 15.598 8.033 10.391 2.161 2.447 2.685
62.816 31.104 15.588 7.945 4.008 2.028 2.412 2.692
63.187 38.211 15.578 7.960 4.010 2.057 2.466 2.752
72.388 31.552 15.626 8.056 4.013 2.255 2.442 2.724
67.818 31.304 15.653 7.985 4.124 2.061 2.506 2.769
62.806 31.146 15.581 8.005 4.017 2.047 2.539 2.797
62.913 31.241 15.634 8.019 4.006 2.072 2.474 2.617
67.794 31.380 15.644 8.052 4.029 2.461 2.684
62.784 31.183 22.794 8.081 10.779 2.355 2.638

31.184 15.689 8.030 4.029 2.446 2.698
62.665 39.188 15.655 8.126 4.061 2.553 2.864
63.527 31.246 15.643 8.004 4.042 2.408 2.592
71.208 36.309 15.554 8.054 4.029 2.440 2.674
62.823 31.136 15.631 15.333 4.026 2.397 2.786
66.861 31.317 15.656 8.062 4.023 2.427 2.792
62.943 31.051 15.633 7.980 4.026 2.494 2.680

31.407 15.640 8.057 4.033 2.421 2.724
69.537 31.364 15.804 7.983 4.012 2.456 2.730
62.895 36.726 15.654 8.010 4.014 2.239 2.614
67.891 31.305 15.579 7.952 4.020 2.455 2.713
62.883 31.287 15.627 7.919 4.036 2.273 2.763
68.882 31.350 15.800 8.121 4.020 2.980 2.718
62.903 31.345 15.712 8.039 4.023 2.425 2.630

31.633 15.708 8.046 4.016 2.442 2.715
62.739 31.300 23.515 8.020 4.011 2.419 2.739

Minimum: 62.632 31.051 15.554 7.919 4.006 2.028 2.149 2.577
Average: 64.943 32.139 16.146 8.266 4.464 2.135 2.446 2.713
Std.'Dev.: 3.146 2.227 1.908 1.335 1.665 0.104 0.131 0.067

Speedup 2.017 4.027 7.909 15.633 30.879 29.150 97.229
Efficiency 1.009 1.007 0.989 0.977 0.965 0.911 0.760
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B.2 OpenMP Timing Results

Fine%grained*parallelization*with*OpenMP
Test:

Run)with)-l)nodes=1:ppn=8)(enforce)8)processors)per)node)

Threads: 1 2 4 8
59.81 32.43 16.48 8.59

32.35 16.58 8.36
59.68 32.15 16.64 8.38
59.64 32.27 16.35 10.11
59.66 31.97 16.47 8.39
60.38 32.16 16.36 8.44
59.59 32.20 16.34 8.40
59.66 32.15 16.32 8.39
58.78 35.22 16.35 8.37
59.65 31.85 16.29 8.40
59.59 32.10 16.31 8.39

32.15 16.30 8.39
58.80 32.15 16.20 8.53
59.72 32.24 16.34 8.43
62.02 32.13 16.32 8.36
60.11 32.09 16.30 8.34

32.14 17.22 8.34
59.50 32.08 18.63 11.43
59.51 32.17 16.29 8.42
59.64 32.00 16.29 8.34

32.51 16.30 8.35
59.69 32.13 16.24 8.37

32.19 16.27 8.39
59.51 32.01 16.77 8.39
59.73 32.15 16.67 8.39
60.11 32.13 16.25 8.45
63.21 35.18 16.29 8.40
60.14 32.30 16.31 8.53
59.67 32.14 16.33 8.40
59.74 32.13 16.21 8.35

Minimum 58.78 31.85 16.20 8.34
Average 59.90 32.36 16.47 8.56
Std.)Dev. 0.902 0.782 0.459 0.628

Speedup: 1.85 3.63 7.05
Efficiency: 0.92 0.91 0.88

./pegSerial)--mode)constantIncidence)--min)100)--
max)131)--increment)1)--incidenceAngle)88)--
outputFile)"output.txt")--progressFile)"progress.txt")-
-gratingType)blazed)--gratingPeriod)1)--
gratingMaterial)Au)--N)15)--gratingGeometry)2.5,30)-
-eV)--threads)=)<T>
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