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Abstract

Mathematical models of electric activity in cardiac tissue are becoming increasingly powerful tools

in the study of cardiac arrhythmias. Considered here are mathematical models based on ordinary

differential equations (ODEs) and partial differential equations (PDEs) that describe the behaviour

of this electrical activity. Generating an efficient numerical solution of these models is a challenging

task, and in fact the physiological accuracy of tissue-scale models is often limited by the efficiency

of the numerical solution process. In this thesis, we discuss two set of experiments that test

ideas for making the numerical solution process more efficient. In the first set of experiments,

we examine the numerical solution of four single cell cardiac electrophysiological models, which

consist solely of ODEs. We study the efficiency of using implicit-explicit Runge–Kutta (IMEX-RK)

splitting methods to solve these models. We find that variable step-size implementations of IMEX-

RK methods (ARK3 and ARK5) that take advantage of Jacobian structure clearly outperform

most methods commonly used in practice for two of the models, and they outperform all methods

commonly used in practice for the remaining models. In the second set of experiments, we examine

the solution of the bidomain model, a model consisting of both ODEs and PDEs that are typically

solved separately. We focus these experiments on numerical methods for the solution of the two

PDEs in the bidomain model. The most popular method for this task, Crank–Nicolson, produces

unphysical oscillations; we propose a method based on a second-order L-stable singly diagonally

implicit Runge–Kutta (SDIRK) method to eliminate these oscillations. We find that although the

SDIRK method is able to eliminate these unphysical oscillations, it is only more efficient for crude

error tolerances.
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Chapter 1

Introduction

Computer simulation is becoming an important tool in cardiovascular research. Mathematical

models of the heart can be used to simulate heart conditions and the effects of certain drugs designed

to treat them. Presently, the development of a drug often costs hundreds of millions of dollars [14].

One aim of computer simulation is to reduce this cost, e.g., by reducing the number of physical

experiments needed in designing a drug.

Electrophysiological models of the heart describe how electricity flows through the heart, con-

trolling its contraction. The models in which we are interested consist of systems of differential

equations. Models of the electrophysiology of one cell are governed by systems of ordinary differ-

ential equations (ODEs), and models of the electrophysiology of more than one cell are governed

by one or more partial differential equations (PDEs). Typically, a PDE model is coupled with an

ODE model to simulate heart tissue consisting of a network of cells; the ODEs model the electrical

activity in the cells, and the PDEs model propagation of the electrical activity across the network

as a whole. Cardiac electrophysiological models are often based on the Nobel prize-winning work

of Hodgkin and Huxley [23] in the 1950s that modelled neural tissue mathematically as a circuit.

Modern cardiac electrophysiological models adapt the work of Hodgkin and Huxley to describe

electrical activity in the heart and include data gathered from experiments to form models with

increasing physiological accuracy.

A major barrier to obtaining the most useful data from tissue-scale electrophysiological models

of the heart is the challenge of performing the simulations efficiently. Often the physiological

accuracy of the mathematical model must be sacrificed for a simulation to become feasible; see,

e.g., [53, 65, 67, 60]. The ODE systems describing the cellular dynamics in single cell models are

non-linear and stiff; see, e.g., [27]. The consequence of stiffness is that the speed of the solution

process is limited by considerations of numerical stability instead of accuracy. Hence, the solution

process can potentially be made more efficient through the use of appropriate numerical algorithms.

To this end, we present two sets of numerical experiments. Each set of experiments tests an idea

for making the solution process more efficient.

In the first set of experiments, we examine the use of implicit-explicit Runge–Kutta (IMEX-

RK) methods [4] for solving single cell cardiac electrophysiological models. An IMEX-RK method
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approximates the solution of a differential equation which is split into two parts: one part better

suited for solution by an implicit method and the other by an explicit method. An IMEX-RK

method uses both an implicit and an explicit method to approximate the solution to the respective

parts. Using these methods together, we are able to maximize the efficiency of the solution by using

the method best suited to each part. We examine the numerical solution of four ODE models and

compare the efficiency of two particular IMEX-RK methods to ten numerical methods commonly

used in practice.

In the second set of experiments, we examine one step in the solution process of the bidomain

model. The bidomain model is a system of coupled ODEs and PDEs that are typically solved

separately using a process called operator splitting. These experiments focus on the solution of the

two PDEs in the bidomain model. Second-order methods can generally be expected to be more

effective than first-order methods; however, the use of the Crank–Nicolson (CN) method, one of the

most common second-order methods for this task, can lead to solutions with noticeable unphysical

oscillations. As an alternative, we propose the use of a second-order L-stable singly diagonally

implicit Runge–Kutta method (SDIRK) to eliminate the unphysical oscillations. We examine the

performance of the SDIRK method in a scenario in which CN is known to produce unphysical

oscillations.

The rest of this thesis is organized as follows. Chapter 2 gives an introduction to cardiac elec-

trophysiology and discusses five popular ODE cell models. Chapter 3 gives an introduction to

the numerical solution of differential equations, both ODEs and PDEs, and a review of numerical

methods used to simulate cardiac electrophysiological models. Chapter 4 outlines numerical ex-

periments and gives the results. In the first set of experiments, IMEX-RK methods are found to

outperform all methods of which we are aware for two of the four models studied. In the second

set of experiments, the SDIRK method is found to eliminate unphysical oscillations but is more

efficient only for crude error tolerances. Finally, Chapter 5 gives some conclusions and suggestions

for future work.
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Chapter 2

Electrical Activity in the Heart

2.1 Physiological Background

Electrical activity is responsible for the periodic contraction and relaxation cycle of the heart that

propels blood throughout the body [56]. Hence, electrical activity is essential for the heart to

perform its function. Most serious heart problems are in fact related to disturbances in the heart’s

electrical activity [56].

The heart has approximately 1010 cells, and every one of them has an electrical potential [56].

Due to the different net electrical charges of different ions in the cytoplasm of heart cells, a heart

cell is negatively charged with respect to its surroundings. This results in a potential difference

across the cell membrane, called the transmembrane potential. If an electrical stimulus applied

to the cell is able to raise the transmembrane potential above a certain threshold, then the cell’s

conduction properties change to allow positive ions to flow into the cell, causing a reversal in the

potential difference across the cell membrane. This results in the depolarization of the cell, during

which time the transmembrane potential increases significantly. After depolarization, there is a

plateau phase, during which the cell remains depolarized. It is during this phase that the blood is

pumped [48]. The cell then enters a repolarization phase, during which the cell’s potential returns

to its resting potential. The natural cycle from depolarization to repolarization, called an action

potential, begins with a spontaneous electrical pulse emanating from specialized tissue called the

sinoatrial node.

Many heart problems are the result of irregularities in the flow of electricity in the heart.

Abnormal electrical activity is called an arrhythmia, which in general is caused either by abnormal

impulse formation, abnormal conduction, or re-entry [2]. Re-entry is the result of an electrical

impulse that persists past the normal activation of the heart and re-excites tissue that has already

contracted during the current heartbeat. This causes irregularities in the heartbeat that can lead to

a number of serious problems, including death. To be able to study these conditions noninvasively is

one common practical motivation for creating mathematical models of electrical activity in cardiac

tissue.

The specific objective of these mathematical models is to model the heart and heart conditions
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in order to simulate treatments; e.g., we can use these mathematical models to perform computer

simulations of the effects of new drugs to treat these heart conditions. Presently, the development of

a new drug has an average cost of approximately $900 million [14]; one objective of using computer

simulation to simulate new drugs is to reduce the number of physical experiments needed to develop

the drug and therefore reduce this cost. As the models become more physiologically accurate we

are able to obtain more useful information from these simulations.

Because of their intricacy, obtaining physiologically accurate mathematical models is a difficult

task. A further challenge to obtaining physiological accuracy is that of performing the simulation

efficiently. To move effectively beyond models for one cell, enough cells must be included in the

model to realistically approximate the geometry and physiology of the heart. Because the heart has

approximately 1010 cells [56], any realistic simulation will have enough cells (or clusters of cells) to

dramatically magnify any inefficiencies in the numerical method. This has forced some researchers

to reduce the physiological accuracy of their models to allow the simulation to be performed within

an acceptable amount of time; see e.g., [53, 65, 67, 60]. The models are numerically stiff, and

so standard (explicit) numerical methods are often unable to provide efficient simulations [20]. If

the efficiency of the simulation process can be significantly improved, then greater physiological

accuracy and subsequently more useful data can be obtained.

2.2 Single Cell Models

The behaviour of electrical activity can be modelled with something as simple as a cubic polyno-

mial [56]. For example, the function

f(Vm) = A2(Vm − Vrest)(Vm − Vth)(Vm − Vpeak), (2.2.1)

can reproduce macroscopically observed behaviour of electrical activity in the cell [56]. Here Vm

is the transmembrane potential, A is the rate of change of the transmembrane potential during

the depolarization phase, Vrest is the resting potential, Vth is the threshold potential, and Vpeak

is the maximum potential. All potentials are measured in mV, and A is measured in mS mm−1.

Models of this type are called phenomenological models [56]. Phenomenological models reproduce

only the macroscopic details regarding electrical activity and do not include any of the underlying

physiological details that cause the creation and behaviour of electrical activity in the heart. For

example, equation (2.2.1) does not model the re-polarization phase [56]. The advantage to using

phenomenological models is that they can simulate an action potential with the lowest possible

computational cost [46].

More typically, ordinary differential equations (ODEs) are used to model the behaviour of
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electricity in a myocardial cell1. ODE models can be placed into two groups.

First-generation models include behaviour described by a phenomenological model as well as

some of the underlying physiology [56]. The ionic channels most responsible for generating an action

potential are included in a first-generation model, but many of the finer details are simplified.

Examples of first-generation models are the FitzHugh–Nagumo and Luo–Rudy Phase I models,

discussed in sections 2.2.1 and 2.2.2.

Second-generation models include all of the detail of a first-generation model and as many of the

finer details as possible [56]. Although models as simple as equation (2.2.1) can be useful in certain

cases, the most useful simulations require second-generation models because details on the finest

level can affect the behaviour of the heart as a whole [56]. Examples of second-generation models

are the models of Courtemanche et al., Winslow et al., and Puglisi–Bers discussed in sections 2.2.3,

2.2.4, and 2.2.5, respectively.

Another way of classifying cardiac electrophysiological models is based on what is being mod-

elled [46]. For example, we have sinoatrial node models, atrial models, atrioventricular models,

Purkinje fibre models, and ventricular models. See, e.g., [46] for a detailed list of dozens of cardiac

electrophysiological models classified in this way.

2.2.1 The FitzHugh–Nagumo model

One of the simplest single cell models is what is now called the FitzHugh–Nagumo (FHN) model.

The model was originally developed as simplification of the Hodgkin–Huxley model by FitzHugh

in 1961 [17] and expressed in the equivalent circuit by Nagumo in 1962 [40]. One could also view

the FHN model as adding just enough detail to phenomenological models, such as equation (2.2.1),

to overcome the failure to model the repolarization phase. The original two-variable formulation is

given by

dVm

dt
= c1Vm(Vm − a)(1 − Vm) − c2w + Ist, (2.2.2)

dw

dt
= b(Vm − c3w), (2.2.3)

where Vm is the transmembrane potential, measured in mV, w is a dimensionless recovery variable,

Ist is the stimulus current and a, b, c1, c2, and c3 are parameters to the model. These parameters

may be modified to model different cell types [56]. An example of values for these parameters is

given in Table 2.2.1.

The FHN model is simple to implement and computationally inexpensive but it is limited in

terms of the physiological accuracy. For example, in the FHN model the cell hyperpolarizes during

1The reader unfamiliar with differential equations should read section 3.1 first.
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the repolarization phase, something that does not occur in physiological data [56]. Many attempts

have been made to modify the FHN model to make it more physiologically accurate while retaining

the simplicity of the original model. One such modification by Rogers and McCulloch [49] changes

one term in equation (2.2.2) to eliminate the hyperpolarization:

dVm

dt
= c1Vm(Vm − a)(1 − Vm) − c2Vmw + Ist, (2.2.4)

dw

dt
= b(Vm − c3w). (2.2.5)

Examples of other modifications include [1, 32, 8].

The FHN model normalizes values of the transmembrane potential to be in the range [−1, 1] (or

in the range [0, 1] for the modified model); a change of variables is needed so that the transmembrane

potential has realistic values [46, 56]. First, we define the total amplitude, Vamp, in terms of the

peak and resting potentials: Vamp = Vpeak−Vrest. This gives the definition of two new variables [56]

V = VampVm + Vrest, (2.2.6)

W = vampw, (2.2.7)

that, when substituted into equations (2.2.4)–(2.2.5), transforms the FHN model into a form that

produces realistic transmembrane potentials [56]:

dV

dt
=

c1
V 2

amp

(V − Vrest)(V − Vth)(Vpeak − V ) − c2
Vamp

(V − Vrest)W + Ist, (2.2.8)

dW

dt
= b(V − Vrest − c3w), (2.2.9)

where the threshold potential is defined by Vth = Vrest + aVamp. Further references to the FHN

model in this thesis refer to the formulation in equations (2.2.8)-(2.2.9).

Table 2.1: An example of parameters to the FHN model [46, 56]

Parameter Value Units
a 0.13 dimensionless
b 0.013 dimensionless
c1 0.26 ms−1

c2 0.1 ms−1

c3 1.0 ms−1

Vrest –85 mV
Vpeak 40 mV
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2.2.2 The Luo–Rudy model

In 1991 Luo and Rudy developed a model of guinea pig ventricular action potentials based on a

previous model from Beeler and Reuter [5]. The Luo–Rudy model [34] extended the Beeler–Reuter

model to include fast inward sodium and outward potassium currents to make the model more

physiologically accurate. The general approach of these models is based on Hodgkin–Huxley type

formalism [23]; the Luo–Rudy model itself consists of 8 nonlinear ODEs.

The quantity of primary concern is the transmembrane potential, due to its importance as

discussed in section 2.1. For an individual cardiac cell we have that the transmembrane potential

Vm, typically measured in mV, satisfies [34]:

dVm

dt
= − 1

Cm
(Iion + Ist), (2.2.10)

where Cm is the membrane capacitance, Iion is the total transmembrane ionic current, and Ist is

the stimulus current.
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Figure 2.1: Transmembrane potential over time in the Luo–Rudy model. This is
a numerical solution for equation (2.2.10) coupled with 7 other ODEs [34] via the
Iion current.

An example of the evolution of Vm over time for this model is given in Figure 2.1. Note that

the sign of Iion determines the direction in which positive ions are flowing [30]. For example, a

negative value for Iion means that we have a net inward flow of positive ions, and so the potential

has a positive derivative, and the potential is increasing [30]. A positive value for Iion means that

there is a net outward flow of positive ions, and so the potential has a negative derivative, and the

potential is decreasing.

The Luo–Rudy model contains 6 ionic currents that are determined by 6 gating variables [34].
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The evolution of each dimensionless gating variable y is governed by a nonlinear ODE involving

rate parameters αy and βy in the general form

dy

dt
=
y∞ − y

τy
, (2.2.11)

where

y∞ =
αy

αy + βy
and τy =

1

αy + βy
,

are the steady state and time constant values of y, respectively. Equivalently, gating equations are

sometimes written in the form
dy

dt
= αy(1 − y) − βyy. (2.2.12)

The remaining ODE in the Luo–Rudy model describes calcium concentration in the cell [34]:

d ([Ca]i)

dt
= −10−4Isi + 0.07(10−4 − [Ca]i), (2.2.13)

where [Ca]i is the intracellular calcium concentration, measured in mM, and Isi is the slow inward

calcium current, measured in µA/cm2. The 6 gating equations of the form (2.2.11) are coupled with

(2.2.10) and (2.2.13) to form the complete Luo–Rudy model. A complete listing of the governing

equations can be found in Appendix A.1. Full details of the model can be found in [34].

In 1994 Luo and Rudy published an improvement to this model, now known as the Luo–Rudy

Phase II model [35, 36]. This model includes the actions of ionic pumps and changes in ionic

concentrations. Consisting of 14 ODEs, it is a more physiologically accurate yet more complicated

model than that given by (2.2.10), (2.2.11), and (2.2.13). We do not consider the Luo–Rudy Phase

II model in this study.

2.2.3 The model of Courtemanche et al.

In 1998 Courtemanche, Ramirez, and Nattel developed a model of human atrial action poten-

tials [11]. It was developed in response to findings that show there are important differences in

human action potentials when compared to those of other mammals frequently used in models.

Courtemanche et al. developed this model with human data supplemented with animal data when

needed. The model of Courtemanche et al. is an extension of the Luo–Rudy Phase II model. It

consists of 21 ODEs. A complete listing of the governing equations can be found in Appendix A.2.

Full details of the model can be found in [11].
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2.2.4 The model of Winslow et al.

In 1999 Winslow, Rice, Jafri, Marbán, and O’Rourke developed a model of canine ventricular

tissue [69]. This model is based on a guinea pig model that was an extension of the Luo–Rudy

Phase II model. The model of Winslow et al. was developed using experimental data to modify the

guinea pig model so that it would simulate canine ventricular tissue. The model of Winslow et al. is

particularly detailed when describing the dynamics of Ca2+, which is an important consideration

in heart failure. It consists of 32 ODEs, making it the most complex of the models in this study.

A complete listing of the governing equations can be found in Appendix A.3. Full details of the

model can be found in [69].

2.2.5 The Puglisi–Bers model

In 2001 Puglisi and Bers developed a model of rabbit ventricular tissue [45]. Although rabbit

ventricular tissue is used frequently in experiment, no mathematical model had been previously

developed for it. This model was adapted from the Luo–Rudy model to include data from the

literature and from the joint laboratory of Puglisi and Bers. This model was designed to be

a learning aid for students as well as a tool for researchers to reproduce experimental data via

computer simulation. Thus, physiological accuracy was of paramount importance. The Puglisi–

Bers model gives particular detail to calcium handling in order to accurately simulate heart failure.

This model contains 17 ODEs. It is also referred to as the LabHeart model [45]. A complete listing

of the governing equations can be found in Appendix A.4. Full details of the model can be found

in [45].

2.3 PDE Models

In order to describe electrical activity in the whole heart, we may couple a single cell model with

a PDE model that describes how electricity flows across a network of cells [56]. One PDE model,

called the bidomain model, is introduced in section 2.3.1. The bidomain model was developed by

Leslie Tung in 1978 [64] and is now widely used for simulating electrical activity at the organ

level. A common, albeit unrealistic, simplification of the bidomain model, called the monodomain

model, is discussed in section 2.3.2, and an extension of the bidomain model to include the torso is

discussed in section 2.3.3.

2.3.1 Bidomain Model

Heart tissue can be classified into two groups: intracellular and extracellular. To account for the

effects of potential differences across the cell membrane, the bidomain model treats these two groups
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as two separate domains. Each point in the heart is considered to be in both domains, which can

be thought of as superimposed on one another [66]. Each point has an electrical potential defined

in each domain [56].

The derivation of the bidomain model begins with Ohm’s law. For each domain, Ohm’s law

requires the current to be

JI = −σI∇uI , (2.3.1)

JE = −σE∇uE, (2.3.2)

where JI and JE are the currents, σI and σE are the conductivity tensors, and uI and uE are the

potentials for the intracellular and extracellular domains, respectively [56].

Figure 2.2: Cross section of muscle fibre in the left ventricle (LV), illustrating
(a) the change in the direction of muscle fibre throughout the heart and (b) the
groupings of fibres and sheets [26].

The conductivity tensors, σI and σE , are defined largely by the structure of the heart. Cardiac

cells are grouped into muscle fibres, and the muscle fibres are grouped into sheets of fibres [56];

see Figure 2.2. These structures influence the flow of electricity; conductivity is greater along the

fibres rather than across them [56]. These properties imply three characteristic directions for the

conductivity values: parallel to the fibres, perpendicular to the fibres but parallel to the sheet, and

perpendicular to the sheet [56]. As the directions of individual fibres change throughout the heart,

so do the conductivity values of the heart. Hence, at each point in each domain a local conductivity

tensor, denoted σ
∗, can be defined in the basis formed by three perpendicular unit vectors: êl, êτ ,

and ên for along the fibre, perpendicular to the fibre but parallel to the sheet, and perpendicular

to the sheet, respectively. σ
∗ can be expressed as

σ
∗ =











σl 0 0

0 στ 0

0 0 σn











,

10



Table 2.2: The top part of this table describes constants, intermediate values,
and variables in the bidomain model. When multiple subscripts are possible, they
appear as a set inside braces. The bottom part of this table describes the meaning
of the subscripts.

Generic Variable Units Description

Cm µF/cm2 Capacitance

ê{l,τ,n} mS/cm Unit vector

J{I,E} mA Current density

σ{I,E} mS/cm Conductivity Tensor

u{I,E} mV Potential

Vm mV Transmembrane potential

σ{l,τ,n} mS/cm Local conductivity values

χ cm−1 Membrane area to volume ratio

Subscript Description

I Intracellular

E Extracellular

l Along fibre

τ Perpendicular to fibre, parallel to sheet

n Perpendicular to sheet

where σl, στ , and σn are local conductivity values expressed in terms of the basis at that point.

Given conductivity tensors for each domain expressed in the local coordinate system, denoted σ
∗
I

and σ
∗
E , the global conductivity matrices can be expressed as

σI = Eσ
∗
IE

T ,

σE = Eσ
∗
EET ,

where E is a matrix having êl, êτ , and ên as columns. Hence, the (j, k) entry entry, σI(j, k), in the

global conductivity tensor σI is given by

σI(j, k) = êj
l ê

k
l σ

I
l + êj

τ ê
k
τσ

I
τ + êj

nê
k
nσ

I
n, (2.3.3)

for j, k = 1, 2, 3. The global conductivity tensor σE is defined similarly.

Here we are considering the heart in isolation; any current leaving one domain must enter the

other [46]. Hence, a change in current density will be of equal magnitude in both domains but will

have the opposite sign:

−∇ · JI = ∇ · JE . (2.3.4)

The current flow across the membrane must be equal to either side of equation (2.3.4). This

current flow may be seen as a time-dependent capacitive current together with an ionic current
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[46]. Thus, using Kirchoff’s current law, we obtain:

−∇ · JI = ∇ · JE = χ

(

Cm
∂Vm

∂t
+ Iion

)

, (2.3.5)

where Cm is the capacitance of the cell membrane, Iion is the ionic current across the cell membrane,

χ is the area of the cell membrane per unit to volume, and Vm is the transmembrane potential,

defined by Vm = uI − uE .

Using equations (2.3.1) and (2.3.2) with equation (2.3.5) gives

∇ · (σI∇uI) = χ

(

Cm
∂Vm

∂t
+ Iion

)

, (2.3.6)

∇ · (σE∇uE) = −χ
(

Cm
∂Vm

∂t
+ Iion

)

. (2.3.7)

The difference in signs between (2.3.6) and (2.3.7) is due to defining the positive direction of flow

to be from intracellular to extracellular [56]. Thus, adding (2.3.6) and (2.3.7) leads to

∇ · (σI∇uI) + ∇ · (σE∇uE) = 0. (2.3.8)

Equations (2.3.6) and (2.3.8) describe completely the three potentials of interest: uE , uI , and Vm.

Using the definition of Vm we can simplify these equations by eliminating the intracellular potential.

This gives the standard formulation of the bidomain model [56]:

∇ · (σI∇Vm) + ∇ · (σI∇uE) = χCm
∂Vm

∂t
+ χIion, (2.3.9a)

∇ · (σI∇Vm) + ∇ · ((σI + σE)∇uE) = 0. (2.3.9b)

There are a number of options for the form of Iion, the simplest is the phenomenological model;

i.e., Iion = (2.2.1). More typically, a system of ODEs, such as those discussed above, is used instead.

In that case, we couple the ODE system with (2.3.9) via a vector, s, of cellular states such as gate

variables and ionic concentrations. With this we can rewrite (2.3.9) as [56]:

∂s

∂t
= f(t, Vm, s), (2.3.10a)

∇ · (σI∇Vm) + ∇ · (σI∇uE) = χCm
∂Vm

∂t
+ χIion(Vm, s), (2.3.10b)

∇ · (σI∇Vm) + ∇ · ((σI + σE)∇uE) = 0, (2.3.10c)

where f is the ODE model being used.

For these equations to have a unique solution, boundary conditions are required for uE and Vm.

To simplify the model and the boundary conditions, it is assumed that the heart is surrounded
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by a non-conductive medium. This assumption implies that both the intracellular and extracel-

lular currents cannot travel past the boundary of the heart; i.e., the normal components of both

components must be zero on the boundary [56]. So the boundary conditions are:

n̂ · (σI∇Vm + σI∇uE) = 0,

n̂ · (σE∇uE) = 0,

where n̂ is the outward surface normal of the heart. Table 2.3 contains values of various parameters

used in the bidomain equations.

Table 2.3: Parameters used in the bidomain equations [56].

Cm 1.0 µF/cm2

χ 2000 cm−1

σI
l 3.0 mS/cm

σI
t 1.0 mS/cm

σI
n 0.31525 mS/cm

σE
l 2.0 mS/cm

σE
t 1.65 mS/cm

σE
n 1.3514 mS/cm

2.3.2 Monodomain Model

Another PDE model of cardiac electrophysiology is the monodomain model. The monodomain

model is a simplification of the bidomain model that is easier to analyse and less computationally

demanding [56]. The monodomain model arises from the simplifying assumption σE = λσI , i.e.,

equal anisotropy rates. This assumption allows us to eliminate σE from (2.3.9) [56]. The choice of

the value of λ can determine physiological accuracy, but it is non-trivial to select a value that gives

the best results for a given experiment [56].

The assumption of equal anisotropy is not supported by experimental measurements of the

two conductivities [56]. This reduction in physiological accuracy means that some physiological

phenomena cannot be investigated with this model [56]. However, this reduction in accuracy can

lead to significant gains in feasibility: the computational cost of using the monodomain model is

about one-half to one-tenth the cost of using the bidomain model, depending on the complexity of

the cell model used [60].
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Substituting σE = λσI into (2.3.9) gives

∇ · (σI∇Vm) + ∇ · (σI∇uE) = χCm
∂Vm

∂t
+ χIion, (2.3.11)

∇ · (σI∇Vm) + (1 + λ)∇ · (σI∇uE) = 0. (2.3.12)

Equation (2.3.12) implies

∇ · (σI∇uE) = − 1

1 + λ
∇ · (σI∇Vm) . (2.3.13)

Using (2.3.13) in (2.3.11) yields a single PDE, and rearranging some terms gives the standard

formulation of the monodomain model [56]

λ

1 + λ
∇ · (σI∇Vm) = χCm

∂Vm

∂t
+ χIion. (2.3.14)

Similarly, the two boundary conditions of the bidomain model are reduced to the boundary condition

n̂ · (σI∇Vm) = 0. (2.3.15)

2.3.3 Torso Model

A simplifying assumption made by the bidomain model is that the heart is surrounded by a non-

conductive medium. This is not a realistic assumption: the heart is surrounded by a conductive

medium, the torso [56]. To model both the heart and torso, several choices must be made regarding

the coupling between the heart and the surrounding tissue. This results in several different ways to

model the problem [56]. The discussion in this section is restricted to the model presented in [56].

An example torso model resulting from a different set of assumptions can be found in [50].

The process beginning with Ohm’s law is equation (2.3.1) can be repeated to produce an addi-

tional PDE for flow of electricity in the torso

∇ · (σT∇uT ) = 0, (2.3.16)

where uT is the current in the torso and σT is the conductivity tensor for the torso.

The boundary conditions for the bidomain model came from an assumption that does not hold

the torso model. Hence, the boundary conditions must be completely reformulated. The first

assumption is that the extracellular domain is in direct contact with the torso, giving

uE = uT .

The second assumption is that the intracellular domain is completely insulated from the torso,
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giving

n̂ · (σI∇Vm + σI∇uE) = 0,

on the surface of the heart. This also implies that

n̂ · (σI∇Vm + (σI + σE)∇uE) = n̂ · (σT∇uT ) ,

on the heart’s surface. The final assumption is that no current flows beyond the boundary of the

torso, giving the boundary condition on the torso to be

(σT∇uT ) · n̂ = 0.

The complete torso model is then

∇ · (σI∇Vm) + ∇ · (σI∇uE) = χCm
∂Vm

∂t
+ χIion, x ∈ H,

∇ · (σI∇Vm) + ∇ · ((σI + σE)∇uE) = 0, x ∈ H,

∇ · (σT∇uT ) = 0, x ∈ T,

uE = uT , x ∈ ∂H,

n̂ · (σI∇Vm + σI∇uE) = 0, x ∈ ∂H,

n̂ · (σI∇Vm + (σI + σE)∇uE) = n̂ · (σT∇uT ) , x ∈ ∂H,

(σT∇uT ) · n̂ = 0, x ∈ ∂T,

where H is the heart domain, T is the torso domain, x is any point in H ∪ T , and ∂H, ∂T are the

boundaries of the heart and torso, respectively.

This research only considers the heart in isolation, and hence the torso model is not used.

2.4 Total Heart Modelling

The models discussed thus far only describe the behaviour one important aspect of cardiac phys-

iology: electrophysiology. In order to model total heart function we must take into account some

other factors as well. The first is soft tissue mechanics [26]. Electrophysiological models describe

the process that controls the mechanical contraction of the heart but do not describe the contrac-

tion itself. Models of soft tissue mechanics describe this behaviour with large deformation elasticity

theory [26]. The second factor in modelling total heart function is ventricular and coronary fluid

mechanics, modelled using the Navier–Stokes equations [26]. Models for each of these three features

of cardiac physiology can be combined to form a model of total heart function [26]. There are addi-

tional important aspects of cardiac physiology that are not generally added to models of total heart
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function, such as cardiac metabolism, because, at present, there are no adequate models [26]. This

research deals only with models of cardiac electrophysiology, so details of the other types of heart

models are not given. It is, however, important to note that models of cardiac electrophysiology

can be considered one part of a larger model.
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Chapter 3

Numerical Methods

3.1 Differential Equations

The material is this section is largely adapted from [10].

A differential equation is an equation that contains an unknown (vector) function y(t) and

its derivatives. If the unknown function y depends only on one independent variable t, then the

equation

F
(

t,y,y′, ...,y(n)
)

= 0, (3.1.1)

is called an ordinary differential equation (ODE). A solution of (3.1.1) is a function, y(t), with

n derivatives that satisfy (3.1.1). When we have known values for a function and n − 1 of its

derivatives at a single point t0, we have an initial-value problem (IVP). This IVP usually gives us

a unique solution to an ODE, as opposed to a general solution that contains arbitrary constants of

integration.

In this thesis, we are primarily concerned with ODEs of the form:

dy

dt
= f (t,y) , y(t0) = y0. (3.1.2)

That is, we are looking at IVPs that describe the rate of change of y over time, t. Without loss of

generality, we can assume t0 = 0.

Sometimes we may need more than one independent variable to mathematically model a given

process. For example, modelling heat flow through a metal rod requires independent variables in

both time and space; the temperature in the rod depends on the position in the rod as well as time.

If we have more than one independent variable, then we may take a derivative with respect to any

one of the independent variables while treating the other independent variables as constants. This

is called a partial derivative. The partial derivative of a function f with respect to the variable yi

is denoted ∂f/∂yi. If a differential equation contains a partial derivative of an unknown function

of more than one independent variable, it is called a partial differential equation (PDE). The del

17



operator, denoted ∇, is frequently used to simplify the specification of PDEs and is defined as

∇ =

n
∑

i=1

êi
∂

∂yi
,

where { êi : i ≤ i ≤ n } is the standard Cartesian basis of Rn.

3.2 Numerical Methods for ODEs

The material in subsections 3.2.1, 3.2.2, 3.2.3, and 3.2.4 has been mainly adapted from [52] and

[27].

3.2.1 Basic Concepts

Although analytical methods exist to solve differential equations, in practice we are often faced

with a differential equation that cannot be solved analytically. Systems of differential equations

that model problems in all of the mathematical sciences are often large, complicated, and non-

linear. When analytical methods are unavailable, one may use numerical methods to approximate

the solution to a differential equation.

Arguably the simplest numerical method for approximating the solution of (3.1.2) is Euler’s

method, also known as Forward Euler (FE). One step of FE from (tn−1,yn−1) to (tn,yn) is given

by

yn = yn−1 + ∆tnf (tn−1,yn−1) , (3.2.1a)

tn = tn−1 + ∆tn, (3.2.1b)

where yn ≈ y(tn). The time step ∆tn := tn − tn−1 need not be constant for each n. Recalling that

the slope of the tangent line at time t for y(t) is given by

y′(t) = f (t,y(t)) ,

we can see that FE is an approximation of the tangent line at each interval. That is, geometrically,

the approximate solution produced by FE is the union of each of these approximations over the

entire solution interval. So, in theory, as ∆t → 0+, the approximation given by FE approaches

the true solution. In other words, given infinite precision, the FE approximation converges to the

true solution as ∆t approaches zero. However, in practice we are limited by the finite amount of

precision available on a given computer.

This notion of convergence is very important when discussing numerical methods. Each consis-
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tent numerical method has an order of convergence. We say a method is of order p if

yn − y(tn) = O(∆tp+1). (3.2.2)

It is well known that FE is first-order accurate [52], which is generally too low for efficiency in

practice.

3.2.2 Error and Stability

No matter how sound the numerical method used, the approximation process naturally produces

some error. For example, we introduce error when we discretize our continuous equation, and further

error is introduced when the solution is computed with finite precision. To obtain an acceptable

approximation, a numerical method must limit all sources of error. One method to control the

error is to estimate the error at each time step and then, if necessary, adjust the size of the step.

If the error is too large, the step is rejected, and the solver tries again using a smaller step-size. If

the error is too small, the solver can increase the size of the next step and thus increase efficiency.

An IVP is often called stiff if the choice of step-size ∆tn of a numerical method is determined by

stability requirements rather than by accuracy requirements1. Generally, the step-size required for

a stiff problem is much smaller than accuracy requirements dictate. In such cases, the numerical

solution is typically much more accurate than required by the user. For efficiency purposes we

would like to choose a step-size based only the accuracy requirements. We can understand this to

some extent by considering absolute stability theory.

In absolute stability theory we consider the numerical approximation of the solution of

y′ = λy, t ≥ 0, y(0) = y0,

where λ is some complex-valued constant. The analytical solution of this equation is

y(t) = y0e
λt, (3.2.3)

and so we have

lim
t→∞

|yn| → 0 (3.2.4)

if and only if the real part of λ is strictly less than zero. We say the region of absolute stability of

the given numerical method is the set of all λ∆t ∈ C such that (3.2.4) holds and |yn+1| ≤ |yn|. It

1Arguably, there is no universally accepted definition of a stiff problem, but this description of stiffness suffices

for our study.

19



is for these λ∆t that the method is absolutely stable. A special case is when the region of absolute

stability contains the entire left-hand side of the complex plane. Methods with this property are

called A-stable. With A-stable methods we have no restrictions on ∆t due to stability (at least for

the model problem (3.2.3)), and hence they are a good choice for stiff methods. If, in addition to

being A-stable, a numerical method also satisfies

lim
z→∞

R(z) = 0, (3.2.5)

where z = λ∆t and

R(z) = 1 + zbT (I − zA)−1(1, . . . , 1)T , (3.2.6)

then the method is said to be L-stable. L-stability requires desirable behaviour on the far left-hand

side of the complex plane, making L-stable methods a good choice for stiff problems.

When a numerical method is able to produce a stable approximation, we are then interested

in the accuracy of the approximation. When the exact solution is not known, we may be able to

generate a reference solution, e.g., by using a variable step-size solver with low error tolerances

until two approximations are produced that agree to a desired number of significant digits. For

ODE experiments in this study, we generate a reference solution by using a high-order, variable

step-size implicit solver and lowering the error tolerances for successive approximations until two

approximations are identical for at least 10 significant digits at N equally spaced output points

ti = itf/N , i = 1, 2, . . . , N , where tf is the endpoint of solution interval and N = 100. We can then

measure the error in the approximation, y, relative to the reference solution, ŷ. A popular way

to quantify error in the literature on heart simulation is the Relative Root Mean Squared (RRMS)

error of the transmembrane potential [24]:

RRMS :=

√

√

√

√

∑N
i=1(Vm,i − V̂m,i)2

∑N
i=1 V̂

2
m,i

, (3.2.7)

where Vm,i is the numerical approximation and V̂m,i is the reference solution to Vm at time ti as

described above. Given the many other approximations made in creating the model, an RRMS

error of 5% is generally considered acceptable.

As a more familiar measure of error, we also quantify error via the global error, which we define

as

eglobal := max
i

|Vm,i − V̂m,i|, i = 1, 2, . . . , N. (3.2.8)
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3.2.3 Runge–Kutta Methods

The FE method can be viewed as the simplest of a more general class of numerical methods for

solving IVPs known as Runge–Kutta (RK) methods; see, e.g., [27]. RK methods aim to improve

on the FE method by increasing the accuracy of the numerical solution by means of additional f

evaluations (or stages) within a given time step. A general s-stage RK method has the form

yn = yn−1 + ∆tn

s
∑

i=1

biKi,

where for i = 1, 2, . . . , s,

Ki = f



tn−1 + ∆tn ci,yn−1 + ∆tn

s
∑

j=1

aijKj



 ,

and which can be summarized via the Butcher tableau [27]:

c1 a11 a12 ... a1s

c2 a21 a22 ... a2s

...
...

...
. . .

...

cs as1 as2 ... ass

b1 b2 ... bs

or

c A

bT

A RK method is explicit if A is strictly lower triangular; otherwise it is implicit. With explicit

Runge–Kutta (ERK) methods, the stages can be computed successively and their contributions

combined to produce a high-order approximation at the end of the step. With implicit Runge–

Kutta (IRK) methods, a (generally) non-linear system of equations must be solved at every time

step for all stages simultaneously. However, because of their superior stability properties, IRK

methods are well-suited for stiff problems [27].

The choice of parameters defining a specific RK method is often made based on desired order

requirements. In other words, we try to pick terms such that the truncation error is of a certain

order. The idea is that repeated function evaluations are used to eliminate lower-order truncation

error terms. Perhaps the most popular high-order ERK method is the classical RK method, which
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is a four-stage, fourth-order ERK method, and which we denote by ERK4:

0 0 0 0 0

1
2

1
2 0 0 0

1
2 0 1

2 0 0

1 0 0 1 0

1
6

1
3

1
3

1
6

Another popular ERK method is the Dormand–Prince 5(4) (DP) pair, which is of order 5 and

has an auxiliary method of order 4 for error estimation and step-size control [52]. This method is

the basis of the popular Matlab routine ode45.

The simplest IRK method, the backward Euler (BE) method, is a one-stage, first-order method

with Butcher tableau

1 1

1
(3.2.9)

If an IRK method has a matrix A that is lower triangular, then it is called a diagonally IRK

(DIRK) method. The size of the non-linear system that is required to be solved at each for each

intermediate value can be reduced by using a DIRK method rather than a fully implicit method

[20]. If we additionally have all aii to be equal, then we may reuse the coefficient matrix I−∆taii
∂f
∂y

needed for the solution of non-linear equations by Newton’s method and be even more efficient.

Methods with this property are called singly DIRK (SDIRK) methods. An example of an SDIRK

method is SDIRK4 of [20, p. 100]. This is an L-stable 5-stage, order-4 method with an auxiliary

method of order-3 used for error estimation and step-size control. IRK methods that are not DIRK

methods can have other desirable features. For example, an s-stage method from the Radau family

of methods (see [20]) has order 2s−1. This gives high-order methods with fewer stages than explicit

methods or DIRK methods with the same order. A popular example of a Radau methods is the

L-stable, 3-stage, order-5 Radau IIA method RADAU5 of [20, p. 74].

Three methods based upon implicit Runge–Kutta methods contained within Matlab are also

considered in this thesis: ode23s, ode23t, and ode23tb. The first is based upon a modified

Rosenbrock formula (see [20]) of order 2 and is meant for the solution of stiff problems, as an

alternative to the popular ode15s. The second is based upon the trapezoidal rule (see [20]), and

the third is based upon both the trapezoidal rule and a backward differentiation formula (see

section 3.2.4). All three methods are recommended in Matlab’s documentation for the solution

of stiff problems with crude error tolerances. Hence, these methods may be well suited to the

simulation of cardiac electrophysiological models as we have described. For further details on these

methods, see Matlab’s online documentation at

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ode23.html.

22

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ode23.html


3.2.4 Linear Multistep Methods

Another general class of numerical methods to solve ODEs is called Linear Multistep Methods

(LMMs). A k-step LMM computes the numerical solution using information from the last k steps.

This distinguishes LMMs from RK methods, which only use information from the previous step.

Let fl = f(tl,yl), where yl is the approximate solution at t = tl. The general form of an LMM is

given by
k

∑

j=0

αjyn−j = ∆t

k
∑

j=0

βjfn−j ,

where k is the number of steps, and αj , βj are the coefficients that define the specific LMM. Some

assumptions are made on the choice of coefficients: α0 6= 0 and |αk| + |βk| 6= 0. In the formulation

above, it is also assumed that the past k integration steps are equally spaced. Often α0 is set to 1

to eliminate arbitrary scaling.

The reliance on k − 1 steps to compute the solution requires that a LMM must have some

procedure for computing the first k − 1 steps. This can be done by, e.g., starting the integration

process with a Runge–Kutta method or starting with lower-order LMMs.

The most common LMMs are derived using polynomial interpolation. The most frequently used

non-stiff LMMs, called Adams methods, solve (3.1.1) using

y(tn) = y(tn−1) +

∫ tn

tn−1

f(t,y(t))dt

and using an interpolating polynomial in place of f(t,y(t)). Explicit Adams methods, called Adams-

Bashforth methods, interpolate f through tn−1, . . . , tn−k. Implicit Adams methods, called Adams–

Moulton methods, interpolate at tn in addition to at the other k points. The most frequently used

LMMs for stiff problems are called Backward Differentiation Formulas (BDFs). BDFs have βj = 0,

with the exception of β0, and are derived by interpolating over past values of y rather than past

values of f and collocating the ODE at tn.

The nature of LMMs makes them an unsuitable choice for cardiac simulation. A LMM requires

the storage of state vectors for all cells in the simulation over several time steps. A RK method,

on the other hand, only requires storage of one step. This becomes particularly important for large

scale experiments, such as those presented in [44], for example, which used two billion cells.

3.3 The Finite Element Method

The finite element method (FEM) is used for the numerical solution of PDEs. See [7, 61] for an

introduction to the subject, or see [56] for a detailed description of the FEM applied to models of
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cardiac electrophysiology. To illustrate the FEM, we consider the following coupled PDEs:

∂Vm

∂t
= ∇ · (σI∇Vm) + ∇ · (σI∇uE), (3.3.1a)

0 = ∇ · (σI∇Vm) + ∇ · ((σI + σE)∇uE). (3.3.1b)

These PDEs are obtained during the solution of the bidomain model, described in section 2.3.1,

via operator splitting. This solution technique is elaborated on in sections 3.4.1 and 3.5. As in

Chapter 2, we solve this PDE system for Vm and uE. In this section we outline the FEM using [7, 61]

for the FEM theory, and [56] for material specific to the bidomain model.

Let S be the function space in which we seek the solution, and let Ω be the domain. The

FEM begins [61] by multiplying (3.3.1) with an arbitrary function, ψ ∈ S, which is known as a

test function, integrating over Ω, and simplifying the result using Green’s Theorem [39] and the

boundary conditions, (2.3.11), to get:

∂

∂t

∫

Ω

Vmψ dx = −
∫

Ω

σI∇Vm · ∇ψ dx−
∫

Ω

σI∇uE · ∇ψ dx, (3.3.2a)

0 =

∫

Ω

σI∇Vm · ∇ψ dx+

∫

Ω

(σI + σI)∇uE · ∇ψ dx. (3.3.2b)

This is known as the weak form of (3.3.1). Any solution satisfying (3.3.1) will also satisfy the

weak form (3.3.2) [7]. It can also be shown that any solution of (3.3.2) that is twice differentiable

is also a solution of (3.3.1) [7].

The weak form is a continuous problem; in order to solve this problem on a computer we must

discretize it. This is done by dividing Ω into a finite set of polygonal domains and then forming a

finite-dimensional function space Sh ⊂ S, in which we define the numerical solution [56]. Triangles

and tetrahedra are common choices for the polygons when solving 2- and 3-dimensional problems,

respectively. For example, the FEM may partition Ω into a set of non-overlapping triangles. This

partition forms the mesh. The numerical solution is found at the vertices of the polygonal region,

called the nodes. The FEM partitions Ω into a set of m triangles. The union of these m triangles

form a polygonal domain Ωh ⊂ Ω, the boundary of which approximates ∂Ω.

Let Sh be the function space in which we seek to find the numerical solution. Let N be the

number of nodes in Ωh, and let x̄i, i = 1, ..., N , be the nodes. We take Sh to be the space spanned

by basis functions φi, i = 1, ..., N , defined by positive linear functions satisfying [61]:

φi =







1, if at node i,

0, elsewhere.

That is, φi vanishes on all triangles that do not have x̄i as a vertex. It is also required that φi
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decreases linearly from x̄i to an adjacent vertex.

The numerical solution of the two unknown variables, Vm and uE , can be written as a linear

combination of the basis functions [61]:

Vm =

N
∑

j=1

Vm,jφj , uE =

N
∑

j=1

uE,jφj , (3.3.3)

where Vm,j , uE,j are time-dependent coefficients. We take ψ = φi, and, at each point x̄i in the

domain, we obtain the following equations from (3.3.2) in the discrete space [61]:

N
∑

j=1

∂

∂t
Vm,j

∫

Ω

φiφj dx = −
N

∑

j=1

Vm,j

∫

Ω

σI∇φi · ∇φj dx−
N

∑

j=1

uE,j

∫

Ω

σI∇φi · ∇φj dx, (3.3.4a)

0 =
N

∑

j=1

Vm,j

∫

Ω

σI∇φi · ∇φj dx+
N

∑

j=1

uE,j

∫

Ω

(σI + σE)∇φi · ∇φj dx,

(3.3.4b)

for i = 1, 2, ..., N .

The basis functions are known, and so we need to solve for the time-dependent unknowns that

define the numerical solution. Because (3.3.4) is a system of linear equations, we may rewrite it

as [61, 56]:




MdVm

dt

0



 = −





KI KI

KI KI+E









Vm

uE



 , (3.3.5)

where

M(i, j) =

∫

Ω

φiφj dx,

KI(i, j) =

∫

Ω

σI∇φi · ∇φj dx,

KI+E(i, j) =

∫

Ω

(σI + σE)∇φi · ∇φj dx,

and Vm and uE are vectors consisting of the time-dependent coefficients, Vm,j and uE,j, defined

above.

Equation (3.3.5) is a differential algebraic equation (DAE). A detailed introduction to DAEs is

beyond the scope of this thesis; for such an introduction, we refer to [20]. In the case of (3.3.5), we

have a linear DAE that can be viewed as an ODE subject to a constraint; the first row representing

the ODE, and the second representing the constraint. In this case, we may solve (3.3.5) with the

methods discussed section 3.2. This spatial discretization from the PDE to a set of DAEs is known

as the method of lines.
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3.4 Splitting Methods

When solving a system of ODEs or PDEs, it may be inefficient to use one numerical method for

every part of the system [25]. For example, some components of the system may be most efficiently

solved with one numerical method and other parts of the system most efficiently solved with another

numerical method. Rather than solving such a system with one numerical method and accepting

the consequences of inefficiency, it is often better to use a splitting method [25]. A splitting method

uses a divide-and-conquer strategy to solve the system by breaking the system into parts that can

be solved efficiently with one particular method.

3.4.1 Operator Splitting

One particular splitting technique is called operator splitting or time-splitting [25]. Consider, for

example, a linear constant-coefficient ODE system:

y′(t) = Ay(t), y(0) = y0. (3.4.1)

The local solution of (3.4.1) on on [tn, tn+1] is given by [25]

y(tn+1) = eτAy(tn), (3.4.2)

where τ = tn+1 − tn. If we rewrite A as A = A1 + A2, then, by the properties of the matrix

exponential [3], we get:

y(tn+1) = eτA1eτA2y(tn). (3.4.3)

Equation (3.4.3) then leads to the operator splitting method on the interval [tn, tn+1] as follows.

When solving (3.4.1) numerically, we divide (3.4.1) with A = A1 + A2 into two sub-problems

y∗(t)

dt
= A1y

∗(t), for tn < t ≤ tn+1, y∗(tn) = yn, (3.4.4)

y∗∗(t)

dt
= A2y

∗∗(t), for tn < t ≤ tn+1, y∗∗(tn) = y∗(tn+1). (3.4.5)

These two sub-problems are solved sequentially, starting with yn and ending with yn+1 = y∗∗(tn+1).

This operator splitting technique is called Godunov splitting and is first-order accurate. This

splitting does introduce additional error at each time-step, beyond truncation and round-off error,

called splitting error. However, it can be shown that if A1 and A2 commute, then the splitting

error goes to zero [25].

Higher-order operator splitting methods are also used. The simplest second-order operator

splitting technique is called Strang splitting [25]. Applied to (3.4.1), Strang splitting is expressed
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using the notation of (3.4.3) as

yn+1 = (e
1

2
τA1e

1

2
τA2)(e

1

2
τA2e

1

2
τA1)yn = e

1

2
τA1eτA2e

1

2
τA1yn. (3.4.6)

Naturally, a second-order operator splitting technique leads to an overall second-order accurate

solution only if the numerical solution to the split equations are (at least) second-order. Both Go-

dunov and Strang splitting fit into a more general formulation of linear operator splitting methods

given by

yn+1 =
s

∑

i=1

αi





r
∏

j=1

eτβijA1eτγijA2



yn, (3.4.7)

where the βij , γij , and αi are the s × r coefficients that define the specific method [25]. For

consistency, it is required that
s

∑

i=1

αi = 1. (3.4.8)

An operator splitting technique in the form of (3.4.7) with order greater than two must have some

negative coefficients [25]. Specifically,

order > 2 and αi > 0, 1 ≤ i ≤ s ⇒ min(βij) < 0 and min(γij) < 0, (3.4.9)

implying a negative time step for both A1 and A2 [25]. Negative time steps can have potentially

troublesome consequences. For example, negative time steps can make the stability analysis of a

given operator splitting method very difficult [25]. Several types of problems are ill-posed when a

negative time step is applied [25], e.g., equations involving a diffusion term, such as the bidomain

model.

3.4.2 Implicit-Explicit Methods

When the right-hand side of an ODE can be written as the sum of two terms

dy

dt
= fIM (t,y) + fEX (t,y) , (3.4.10)

it is often natural to consider approximating the contributions of fIM (t,y) and fEX(t,y) using

different numerical methods. Such methods are known as additive methods. In general, when the

right-hand side of an ODE can be written as the sum of n terms, these methods are called n-

additive methods. When the constituent numerical methods are RK methods, then they are known

as n-additive RK methods. Furthermore, if dy/dt = fIM (t,y) is such that it is best approximated

with an implicit method and dy/dt = fEX(t,y) is such that it is best approximated with an

explicit method, we may use an implicit-explicit (IMEX) method in an attempt to approximate
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the solution to this ODE efficiently [29]. An example of when an IMEX method would be useful

is when fIM (t,y) consists of stiff and/or linear terms and fEX(t,y) consists of non-stiff and/or

non-linear terms. Again, when the constituent implicit and explicit methods are RK methods, we

have an IMEX-RK method.

For example [4], the combination of the FE and BE methods (equations (3.2.1) and (3.2.9))

gives the IMEX-RK method:

yn = yn−1 + ∆tn
(

fEX

(

tn−1,yn−1

)

+ fIM (tn,yn)
)

.

More generally an s-stage IRK method with coefficients A, c,b is combined with an (s+1)-stage

ERK method with coefficients Â, b̂, ĉ. As is conventional, we assume that ĉ = (0, c)T , and the

IRK method is taken to be an SDIRK method [4, 29].

One step of an IMEX-RK method is given by the following [4]. Set

K̂1 = fEX(tn−1,yn−1).

Then, for i = 1, ..., s, solve for Ki

Ki = fIM (tn−1 + ∆tnci,yi) ,

where

yi = yn−1 + ∆tn

i
∑

j=1

aijKj +

i
∑

j=1

âi+1,jK̂j .

Evaluate

K̂i+1 = fEX (tn−1 + ∆tnci,yi) .

Finally, evaluate

yn = yn−1 + ∆tn

s
∑

j=1

bjKj +

s+1
∑

j=1

b̂jK̂j .

In this thesis, we consider the IMEX-RK methods ARK3(2)4L[2]SA and ARK5(3)8L[2]SA

from [29], which we denote by ARK3 and ARK5, respectively. ARK3 is an IMEX-RK method

having 4 stages and order 3 with an auxiliary method of order 2 for error estimation and automatic

step-size control; ARK5 has 8 stages, order 5, and an auxiliary method of order 4. The Butcher

tableaux of ARK3 and ARK5 are listed in Appendix C of [29].

We split the ODE (3.1.2) on each time step [tn−1, tn] by letting fIM (t,y) := J(tn−1,yn−1)y(t)

and fEX(t,y) := f(t,y)− J(tn−1,yn−1)y(t), where J := ∂f/∂y. We note that this splitting is such

that only the linear term is treated implicitly, and hence there is no need for a Newton iteration

when solving the implicit equations.
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3.5 Popular Numerical Methods for Cardiac Electrophysi-

ology Simulation

3.5.1 Methods for Single Cell Simulations

An alternative to using classical methods such as FE that is popular in the cardiac simulation

literature is commonly called the Rush–Larsen (RL) method [51], even though it dates back to work

done earlier by Hodgkin and Huxley [23]. The RL method is an example of a non-standard finite

difference (NSFD) method. NSFD methods use mixtures of discretizations in order to produce

methods that preserve specific properties of the exact solution, such as positivity or asymptotic

correctness. The RL method advances the solution to the gating equations (2.2.11) using

yn = y∞ + (yn−1 − y∞)e
−∆tn

τy , (3.5.1)

which represents the exact solution of (2.2.11) assuming all variables besides y are constant. FE is

then used to advance the solution of the remaining equations. Using this method the Luo–Rudy

model, for example, is no longer stiff [55]; i.e., the time step-size can be chosen based on accuracy

considerations. However, this method is only first-order accurate and thus suffers from the usual

drawbacks of low-order methods. RL can be put in a general class of methods called waveform

relaxation (WR) methods. WR methods break up the solution of a system of ODEs over a time

interval such that each part may be solved separately for the complete time interval. See [27] and

the references therein for a brief introduction to WR methods.

Combinations of (3.5.1) with methods other than FE were investigated in [37]. In particular,

both the combination of (3.5.1) with a second-order SDIRK method and the combination of (3.5.1)

with the second-order implicit midpoint method were demonstrated to be second-order. Numerical

experiments involving the models of Courtemanche et al. and Winslow et al. presented in [37]

demonstrated gains in efficiency relative to both FE and to (3.5.1) and FE when using these two

combinations, particularly for the model of Courtemanche et al.

Other numerical methods used to solve the ODEs in such models include SDIRK methods, fully

implicit RK methods, and multi-step methods based on BDFs; see, e.g., [57].

3.5.2 Methods for Multiple Cell Simulations

The use of splitting methods for cardiac simulations is quite common, particularly for simulations in

which the ODEs for myocardial cell models are coupled with PDEs describing the flow of electricity

through myocardial tissue.

A second-order accurate operator splitting method for the monodomain model was studied by
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Qu and Garfinkel in [47]. This method divides the solution of the monodomain PDE and the

coupled ODE model into the three steps using Strang splitting (see section 3.4). A step from tn to

tn + ∆t consists of:

Step 1. Integrate
λ

1 + λ
∇ · (σI∇Vm) = χCm

∂Vm

∂t
(3.5.2)

for a step of size ∆t/2 using the solution at time tn as the initial condition.

Step 2. Integrate the cell model a step of size ∆t using the solution of Step 1 as the initial

condition.

Step 3. Integrate (3.5.2) for a step of size ∆t/2 using the solution of Step 2 as the initial

condition.

The advantage of this splitting method is that it transforms the non-linear PDE problem into a

linear PDE and a set of non-linear ODEs. The authors use RL together with FE to solve the ODEs

and FE to solve the PDE. The authors also investigate the use of an alternating direction implicit

method [25] to solve the PDE as an alternative to FE. The use of first-order methods means that

the computed solution is not second-order accurate. However, this splitting method could obtain

second-order accuracy assuming more appropriate time integration methods are used; i.e., methods

of at least second-order.

Note that it is possible to split the monodomain model in the same manner and instead use

first-order Godunov splitting. In this case, Step 1 would instead require a step of size ∆t, and

Step 3 would not be required. Both Godunov and Strang splitting are frequently used in cardiac

simulations.

Other work has been done to apply operator splitting to the monodomain model in the same

manner as done by Qu and Garfinkel. For example, Yung [70] studied the monodomain model

coupled with the model of Winslow et al. Yung used a BDF solver to integrate the stiff ODE model

and an explicit second-order Runge–Kutta method for PDE component. Yung compared the split-

ting method to FE and found cases such that each method is the most efficient. Specifically, FE is

the most efficient method when the membrane kinetics of the model of Winslow et al. are modified

by imposing a maximum value on dPO1
/dt and dPO2

/dt, equations (A.3.2) and (A.3.3), and the

operator splitting method is the most efficient method when the model of Winslow et al. is not

modified. Yung also demonstrates that the operator splitting method is unsuitable for the non-stiff

FHN model due to the large amount of error in the computed solution when compared to FE or

ERK4. Trangenstein [63] studies operator splitting for the monodomain model (as well as adaptive

mesh refinement) using an SDIRK method for the ODE model with a Crank–Nicolson method for

the PDEs. When compared to solving the problem unsplit with the LSODE solver [22], Trangen-

stein’s method is shown to be much more efficient. However, comparisons were only performed

with a very small mesh in 1D.
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The same idea for a splitting method has been applied to the bidomain model. Instead of

solving (3.5.2), we solve two linear PDEs:

∂Vm

∂t
= ∇ · (σI∇Vm) + ∇ · (σI∇uE), (3.5.3a)

0 = ∇ · (σI∇Vm) + ∇ · ((σI + σE)∇uE). (3.5.3b)

This has been used by many authors. For example, Whiteley [68] investigates the use of a first-

order semi-implicit method for solving the PDE component, comparing it to a first-order explicit

method and a second-order Crank–Nicolson method. Whiteley shows that the semi-implicit method

is slower than the explicit method when the same step-size is used for each method, but the semi-

implicit method can be up to 35 times faster when the largest possible step-sizes are used. Whiteley

notes that the Crank–Nicolson method takes about the same amount of execution time as the semi-

implicit method. Whiteley demonstrates unphysical oscillations in the solutions produced by the

semi-implicit and Crank–Nicolson methods when larger step-sizes are used. Whiteley shows that if

a step-size small enough to eliminate these oscillations is selected, then the semi-implicit method

is still an order of magnitude faster than the explicit method. This splitting method is also used

by Han and Ng with first- and second-order IMEX schemes in [21] for both the monodomain and

bidomain models. An implicit method is used for the PDE(s), and an explicit method is used to

integrate the ODEs [41]. A similar approach is used by Pennacchio and Simoncini in [42],where the

IMEX method forward-backward Euler [4] is used, although the focus is on solving the algebraic

system arising from the discretization with forward-backward Euler.

Splitting is used in an analogous manner for the torso model by Sundnes et al. in [58]. Godunov

and Strang splitting were both a part of the algorithm investigated by the authors. With Godunov

splitting, BE is used to solve the split PDE system, and with Strang splitting, Crank–Nicolson is

used. The choice of the splitting and integration method was dependent on a parameter in their

algorithm. In both cases, a third-order implicit Runge–Kutta scheme was used for the split ODE

model. Second-order convergence is demonstrated for the Strang splitting method, although a very

fine mesh is required to observe this for most the complex cell model studied in the paper. The

two methods are very close in terms of execution time, but the Strang splitting method is more

accurate. In particular, the propagation velocity is reproduced much more accurately with the

Strang splitting method; the authors argue the increased accuracy is a crucial feature for many

practical applications.

Some work has been done to apply operator splitting in this manner to even more complicated

models. For example, Thorvaldsen et al. [62] uses this operator splitting method for a model of

cardiac electrophysiology that includes the mechanical function of the heart. As such models are
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beyond the scope of this thesis, work in this area is not elaborated on.

See Chapter 3 of [56] for a detailed description of this operator splitting method applied to the

monodomain, bidomain, and torso models.

Although splitting in the manner of Qu and Garfinkel has been used frequently, other splitting

methods have been used as well. For example, some authors split the bidomain model even further

by additionally splitting the two PDEs; see, e.g., [33]. Splitting of this type is typically limited to

first-order [58]. Another approach, by Keener and Borgar [28], splits using the eigenvalues of the

Jacobian of the cell model, J. Using the fact that J is bounded, they find a matrix A such that

J + A is always positive. Using A, they split the right hand side of the cell model, f (t,y), into

f (t,y) + Ay and (−Ay). The former is solved explicitly and the latter implicitly.

Other techniques for improving the accuracy and efficiency of cardiac simulations have been

studied as well, such as adaptive mesh refinement [6], parallel computing [44], and algebraic pre-

conditioning [43]. Because the focus of this thesis is on time integration, these subjects are not

elaborated on. The interested reader may consult [66] for a review work studying the solution of

the bidomain model.
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Chapter 4

Results

We performed two sets of numerical experiments, testing ideas to make cardiac simulation more

efficient: one set of single cell experiments, and one set of two-dimensional experiments with tens

of thousands of cells. Results of the first set of experiments were published in [54] and results of

the second set of experiments are under review for publication as [13].

The first set of experiments we performed tested the execution time of IMEX-RK methods,

described in section 3.4.2, relative to some commonly used numerical methods. As outlined in

section 3.5.1, a number of numerical methods for solving single cell models of cardiac electrophysi-

ology have been studied. This includes standard explicit methods, such as FE and ERK4, standard

implicit methods, such as SDIRK or RADAU methods, and methods specialized to cardiac electro-

physiology, such as the RL method. While some of these methods can be efficient relative to one

another, there are disadvantages to each of them that can limit their efficiency. The explicit meth-

ods have severe step-size restrictions, and the implicit methods require expensive Newton iterations.

The most popular method, RL, can also face step-size restrictions, particularly with relatively stiff

models as demonstrated in [37]. IMEX-RK methods can avoid step-size restrictions seen in explicit

methods, and the particular IMEX-RK methods used in this thesis do not require Newton itera-

tions. Hence, we studied the use of an IMEX-RK method as an alternative. In this experiment our

hypothesis was: If we use an IMEX-RK method to solve a single cell cardiac electrophysiological

model, then the simulation will be more efficient than if we had selected one of frequently used

methods instead. Full details and results of the experiment are presented in section 4.1.

The second set of experiments we performed studied the solution of (3.5.3), the split linear PDE

component of the bidomain model. As described in section 3.5, second-order methods for this task

can better reproduce key physiological properties, such as conduction velocity, when compared to

first-order methods. Furthermore, the most popular second-order method for solving this model,

Crank-Nicolson (CN), has relatively poor error-damping properties that often result in solutions

with unphysical oscillations, such as those exhibited in [68]. We expected the L-stability property,

defined in section 3.2.2, to be relevant in suppressing unphysical oscillations due to its strong

damping properties. SDIRK methods are arguably the simplest possible L-stable methods. To

overcome these problems and fully realize the potential of second-order splitting methods for the

33



bidomain equations, we studied a second-order method based on Strang splitting and a second-

order L-stable SDIRK method to solve (3.5.3). We compared the SDIRK method to the CN, as

well as to the simplest L-stable method, BE. Our hypothesis for this experiment was: If we use a

second-order L-stable SDIRK method to solve (3.5.3), then the solution will be free of unphysical

oscillations and we will be able to obtain a solution more efficiently. Full details and results of the

experiment are presented in section 4.2.

4.1 Single Cell Experiments

4.1.1 Overview of Experiments

To evaluate the efficiency of IMEX-RK methods, we performed numerical experiments with the FE,

ERK4, RL, DP, BE, SDIRK4, RADAU5, ode23s, ode23t, ode23tb, ARK3, and ARK5 methods.

Four different cardiac electrophysiological models were used: Luo–Rudy, Courtemanche et al.,

Winslow et al., and Puglisi–Bers, described in sections 2.2.2, 2.2.3, 2.2.4 and 2.2.5.

Initial values for the experiments depended on the model for the particular experiment. Except

for Vm, the initial values of the variables were taken to be those that correspond to the heart in its

resting state. For the models of Luo–Rudy and Winslow et al. , the initial values of Vm were chosen

to produce the effect of an explicit stimulus current. That is, the initial values used for Vm are

above the thresholds for the cells to fire. For the models of Courtemanche et al. and Puglisi–Bers,

the initial values for Vm were taken as their resting values, and an explicit stimulus was applied as

given by (2.2.10). In particular, for the model of Courtemanche et al., Ist = −2000 pA/pF from

t = 0 to t = 2ms and 0 elsewhere; for the Puglisi–Bers model, Ist = −10 µA/µF from t = 1 to t = 5

ms and 0 elsewhere. The specific initial values used for Vm are listed in Table 4.1. See [34, 11, 69, 45]

for complete listings of the remaining initial values. These values may also be accessed from

http://www.cellml.org/models/ under the directories luo rudy 1991 version04,

courtemanche ramirez nattel 1998 version02, winslow rice jafri marban ororke 1999 version01, and

puglisi bers 2001 version01, respectively.

Table 4.1: Initial values for Vm = Vrest.

Model Vrest

Luo–Rudy −35.0
Courtemanche et al. −81.2

Winslow et al. −35.0
Puglisi–Bers −85.5

The models were solved over time intervals representing one cardiac cycle. Different time in-

tervals were used due to specific physiological properties of the mammalian heart that each model

34
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represents. Accordingly, the Luo–Rudy model was solved on the interval [0,450] ms, the model of

Courtemanche et al. was solved on the interval [0,500] ms, the model of Winslow et al. was solved

on the interval [0,300] ms, and the Puglisi–Bers model was solved on the interval [0,330] ms.

All the numerical experiments were performed on an Athlon 64 3000+ 1.8 GHz processor with

1 GB RAM. CPU times reported are the minimum of 5 runs. We note that the runs for FE,

ERK4, RL, DP, ARK3, and ARK5 were performed within the odeToJava framework. Presently,

odeToJava supports only ERK and linearly implicit IMEX-RK methods; numerical experiments

involving other implicit techniques were performed as follows. The runs for ode23s, ode23t, and

ode23tb were performed within Matlab. The runs for BE were performed using ode15s within

Matlab with MaxOrder set to 1 and BDF to ’On’. In these cases a conversion factor was determined to

compare CPU time within Matlab to CPU time within odeToJava. This was done by computing the

average of the ratios of a number of runs of ode45 with the DP class within odeToJava for different

tolerances. Similarly, the SDIRK4 and RADAU5 methods were run using their respective Fortran

codes, and a conversion factor for CPU times was calculated by comparing runs of DOPRI5.f [19,

p. 477] with the DP class in odeToJava. Conversion factors were double-checked by comparing

them to conversion factors obtained with forward Euler code written in odeToJava, Matlab, and

Fortran. All CPU times reported below for BE, ode23s, ode23t, ode23tb, SDIRK4, and RADAU5

reflect this conversion.

4.1.2 Customized Linear System Solver

With the splitting employed, a linear system involving J(t,y) must be solved at each time step of

an IMEX-RK integration. Accordingly, we are interested in the sparsity pattern of J(t,y) across

the entire solution interval of an ODE. A sparsity pattern can be thought of as a map of a matrix

describing which entries of a matrix are always zero and which entries can be non-zero. The sparsity

patterns of J(t,y) for each of the 4 models were generated; see Figure 4.1 for the sparsity patterns

of the four models. If an element of J(t,y) is always zero, it may be possible to omit it during

Gaussian Elimination [15], the method used for solving linear systems by our implicit solver. This

means that we may further optimize the IMEX-RK results compared to the previous section by

customizing a Gaussian Elimination code to take advantage of these sparsity patterns. Results of

the ARK3 and ARK5 methods with customized Gaussian Elimination routine are included below.

4.1.3 Constant Step Size Results

In Table 4.2, we report the maximum step-size, ∆tmax, to 3 significant figures, for which FE,

ERK4, and RL produce an approximation with less than 5% RRMS error. We also report the

corresponding CPU times required, the RRMS error, and the global error.

For FE and ERK4, ∆tmax is also the step-size that produces a stable solution, indicating that
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Figure 4.1: Sparsity patterns for the four models.

Table 4.2: Results for the constant step-size FE, ERK4, and RL methods.

∆tmax CPU Time (s) RRMS Error Global Error
L FE 1.34E–2 2.24E–1 3.08E–2 2.81E+0
R ERK4 1.86E–2 6.77E–1 3.87E–2 3.51E+0

RL 2.50E–1 4.29E–2 4.79E–2 5.39E+0
C FE 1.94E–2 8.05E–1 2.30E–3 1.94E+0
R ERK4 2.68E–2 2.30E+0 4.73E–2 6.73E+0
T RL 3.45E–1 7.89E–2 4.97E–2 3.75E+1
W FE 1.07E–4 4.04E+1 7.78E–8 9.91E–2
I ERK4 1.30E–4 1.31E+2 3.40E–2 2.61E–1
N RL 2.80E–4 2.25E+1 4.86E–2 6.08E+0
P FE 1.08E–2 4.54E–1 5.20E–3 3.54E–1
B ERK4 1.48E–2 1.08E+0 1.30E–2 1.33E–1

RL 4.30E–1 6.50E–2 4.83E–2 8.54E+0
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Table 4.3: Variable step-size results for the Luo–Rudy model.

TOL CPU Time Sparse CPU RRMS Global Average

(s) Time (s) Error Error ∆t

DP –2 5.20E–1 – 1.85E–2 2.41E+0 9.26E–2

BE –3 1.45E–1 – 1.61E–2 2.92E+0 1.08E+0

SDIRK4 –1 4.80E–2 – 1.77E–2 2.05E+0 1.25E+1

RADAU5 –1 7.30E–2 – 6.75E–4 1.78E–2 1.25E+1

ode23s –1 1.03E–2 – 3.25E–2 5.82E+0 1.50E+1

ode23t –1 1.17E–2 – 2.97E–2 6.60E+0 1.00E+1

ode23tb –1 1.04E–2 – 1.17E–2 2.37E+0 1.25E+1

ARK3 –2 4.00E–2 1.80E–2 5.33E–3 1.91E+0 7.25E+0

ARK5 –2 3.40E–2 2.40E–2 7.46E–4 2.42E+0 1.15E+1

these methods generally view the problems as stiff. Thus the resulting RRMS errors can be well

below the desired levels. We also see that FE takes approximately 2-3 times less CPU time than

ERK4 on all 4 models studied. Hence, as is well known, higher order does not lead to greater

efficiency when non-stiff methods are applied to stiff problems with moderate accuracy requirements.

We note that care must be exercised when determining ∆tmax for the RL method because the

RRMS error produced is not a monotonically increasing function of the step-size. In other words,

there exist ∆t < ∆tmax for which the RRMS error exceeds 5%. We see that the RL method is the

most efficient for all four models. It ranges from about 2 times faster for the model of Winslow et

al. to about 10 times faster for the CRT model.

4.1.4 Variable Step-Size Tests

Tables 4.3–4.6 respectively report the results from DP, BE, SDIRK4, RADAU5, ode23s, ode23t,

ode23tb, ARK3, and ARK5 with variable step-sizes applied to each of the 4 cardiac electrophysio-

logical models. We run the models using standard error estimation and step-size control algorithms

(see, e.g., [52]) for a range of absolute and relative tolerances. We set absolute tolerances equal to

relative tolerances and define TOL to be their logarithm to base 10; e.g., TOL= −3 implies both

absolute and relative tolerances were set to 10−3. Integer values of TOL were run from −1 to −6

for all solvers and all 4 models, but details are reported for only the runs with the best CPU time

that met the 5% RRMS error criterion.

For the Luo–Rudy (LR) model, ARK3 and ARK5 outperform seven of the other methods in the

study even without taking sparsity into account. With sparsity, ARK3 is about 1.7 times slower

than the method that produces an acceptable solution in the least amount of time, ode23s.
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Table 4.4: Variable step-size results for the model of Courtemanche et al.

TOL CPU Time Sparse CPU RRMS Global Average

(s) Time (s) Error Error ∆t

DP –3 6.37E–1 – 5.26E–4 2.71E–1 1.66E–1

BE –2 8.26E–2 – 2.40E–2 1.21E+1 2.34E+0

SDIRK4 –2 1.28E–1 – 7.51E–4 1.91E–1 9.43E+0

RADAU5 –1 2.40E–1 – 2.61E–3 2.79E+0 1.04E+1

ode23s –1 4.52E–1 – 3.13E–2 2.50E+1 1.25E+1

ode23t –1 3.04E–1 – 7.66E–3 1.16E+0 8.33E+0

ode23tb –1 3.16E–1 – 6.87E–3 3.55E+0 1.02E+1

ARK3 –2 6.90E–2 4.50E–2 7.87E–3 1.06E+0 7.14E+0

ARK5 –2 1.37E–1 6.00E–2 3.60E–2 2.28E+1 1.19E+1

Table 4.5: Variable step-size results for the model of Winslow et al.

TOL CPU Time Sparse CPU RRMS Global Average

(s) Time (s) Error Error ∆t

DP –3 3.00E+1 – 7.92E–3 4.15E–1 4.88E–3

BE –4 9.51E–1 – 3.71E–2 1.25E+1 1.32E–1

SDIRK4 –2 2.72E–1 – 5.03E–3 5.81E–1 3.75E+0

RADAU5 –3 6.13E–1 – 7.68E–3 9.84E–1 2.65E+0

ode23s –1 3.90E–2 – 1.85E–2 4.94E+0 5.17E+0

ode23t –2 4.72E–2 – 3.80E–2 9.76E+0 2.03E+0

ode23tb –2 3.90E–2 – 2.31E–2 5.27E+0 2.88E+0

ARK3 –3 2.68E–1 1.97E–1 1.46E–2 1.84E+0 1.69E+0

ARK5 –3 4.65E–1 2.92E–1 3.15E–2 3.96E+0 3.06E+0
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Table 4.6: Variable step-size results for the Puglisi–Bers model.

TOL CPU Time Sparse CPU RRMS Global Average

(s) Time (s) Error Error ∆t

DP –2 1.53E+0 – 4.43E–2 1.30E+0 4.09E–2

BE –3 1.74E–1 – 5.69E–3 7.62E+0 6.13E–1

SDIRK4 –3 1.36E–1 – 8.48E–3 5.85E+0 4.92E+0

RADAU5 –2 1.53E–1 – 4.77E–2 5.53E+1 6.34E+0

ode23s –2 6.38E–2 – 2.03E–2 8.23E+0 4.71E+0

ode23t –2 3.84E–2 – 1.31E–2 6.84E+0 3.51E+0

ode23tb –2 3.36E–2 – 1.44E–2 7.56E+0 4.52E+0

ARK3 –4 6.90E–2 4.60E–2 2.38E–3 5.04E–1 4.12E+0

ARK5 –3 1.12E–2 7.00E–3 1.89E–2 1.63E+1 1.48E+0

For the model of Courtemanche et al. (CRT), ARK3 produces an acceptable solution in the least

amount of CPU time. With sparsity, ARK3 is 1.8 times faster than RL, its next closest commonly

used competitor.

For the model of Winslow et al. (WIN), ARK3 and ARK5 outperform seven of the other

methods in the study. With sparsity, ARK3 is about 5 times slower than the methods that produce

an acceptable solution in the least amount of time, ode23s and ode23tb.

Finally, for the Puglisi–Bers (PB) model, we see that ARK5 produces an acceptable solution in

the least amount of CPU time, with or without taking sparsity into account. In this case, ARK5

with sparsity produces an acceptable result about 5 times faster than ode23tb, its next closest

competitor.

Due to the small execution time required for solving a single cycle with individual cell models,

the execution time of 100 runs as described above was computed; i.e. the execution time required

for 100 cardiac cycles. This was to ensure the reliability of the results by eliminating the possibility

of noise influencing the results. Ratios between execution times for individual methods remained

the same to at least three significant figures. In other words, results presented above for one cardiac

cycle held for one hundred cardiac cycles.

4.1.5 Constant Step-Size IMEX

We also investigated the use of constant step-size ARK3 and ARK5 methods. We find that these

constant step-size implementations significantly underperform the variable step-size implementa-

tion. They also significantly underperform the RL method on the LR, CRT, and PB models and

the FE method on the WIN model. We omit further details.
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4.2 Two-Dimensional Experiments

4.2.1 Overview of Experiments

Using PyCC [38], a Python based problem solving environment for the solution of PDEs, we studied

the solution of the bidomain model. In particular, we focused on the split linear PDE system

obtained when solving the bidomain model using operator splitting. We compared the performance

of the second-order SDIRK method outlined above to a second-order implicit method, CN, and a

first-order L-stable implicit method, BE. In the following, we describe the methods used in this

study.

We describe a general formulation based on a Θ fractional-step method, where the Strang and

Godunov splitting methods, defined in section 3.4.1, are obtained as special cases for Θ = 1/2 and

Θ = 1, respectively. One time step requires the separate solution of two systems: one is the split

cell model

∂s

∂t
= f(t, Vm, s), (4.2.1a)

∂Vm

∂t
= −Iion(Vm, s), (4.2.1b)

and the other is the linear PDE system

∂Vm

∂t
= ∇ · (σI∇Vm) + ∇ · (σI∇uE), (4.2.2a)

0 = ∇ · (σI∇Vm) + ∇ · ((σI + σE)∇uE). (4.2.2b)

One step of the splitting method to advance from time tn to time tn+1 = tn + ∆t involves the

solution of the two systems (denoted A and B) in three phases.

1. Using as initial conditions the solution at time tn, solve System A for tn < t ≤ tn+Θ := t+Θ∆t.

2. Using the solution of phase 1 as the initial condition, solve System B for tn < t ≤ tn+1.

3. Using the solution of phase 2 as the initial condition, solve System A for tn+Θ < t ≤ tn+1.

In principle, either system (4.2.1) or (4.2.2) may be used as System A, with the other as System

B. In practice, however, the quality of a numerical solution may vary significantly for different

choices of A and B. As is the case in all of the literature of which we are aware, in this thesis we

use the BE method and CN to solve (4.2.2) as system B. This was important for the quality of

the solution produced by BE. When using the SDIRK method, we solve (4.2.2) as system A. This

produced higher-quality solutions, especially for large ∆t. We also note that except for the first
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and last time steps, phase 3 from time step n is combined in practice with phase 1 from time step

n+ 1 for efficiency; i.e., a single step from t = tn+Θ to t = tn+1+Θ is taken.

The algorithm used for both BE and CN can be seen as special cases of a more general method.

This method, called the θ-rule, uses BE in the case of θ = 1 and a combination of CN and implicit

midpoint in the case of θ = 1/2. When applied to (4.2.2) this method results in the following linear

system to be solved at each step in time:





M + θ∆tKI ∆tKI

∆tKI ∆t
θ KI+E









V n+1
m

un+θ
E



 =





(M − (1 − θ)∆tKI)V n
m

−∆t(1−θ)
θ KIV n

m



 , (4.2.3)

where un+θ
E is numerical solution of uE at time tn +θ∆t. When solving with CN, we used Θ = 1/2,

and when solving with BE we used Θ = 1; i.e., we took Θ = θ.

This linear system is too large and sparse to be solved efficiently with a direct method. Instead,

we used a conjugate gradient iterative solver; see, e.g., [18]. To solve a linear system with a conjugate

gradient method, the system must be symmetric. Hence, the second row of (4.2.3) was scaled by

∆t to meet this requirement. In all experiments, the iteration is deemed to have converged when

2-norm of the initial residual has decreased by 5 orders of magnitude; this is the default behaviour

in PyCC.

The SDIRK method we used in this study is the L-stable, two-stage, second-order SDIRK

method defined by the Butcher tableau

γ γ 0

1 (1 − γ) γ

(1 − γ) γ

,

with γ = (2 −
√

2)/2 [20]. When solving with the SDIRK method we used Θ = 1/2.

For a general initial-value problem, (3.1.2), this method takes one step in time by means of the

iteration

Y1 − ∆tγf(tn + γ∆t,Y1) = yn,

yn+1 − ∆tγf(tn+1,yn+1) = yn + ∆t(1 − γ)f(tn + γ∆t,Y1).

This iteration has been simplified using the fact that yn+1 = Y2.

This leads to two linear systems that need to be solved to take one step in time. First, we must

solve




M + γ∆tKI γ∆tKI

γ∆tKI γ∆tKI+E









V ∗
m

u∗E



 =





MV n
m

0



 ,

to find the stage values Y1 = (V ∗
m, u

∗
E). The second row has again been scaled, this time by γ∆t,
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to meet the need for a symmetric system. Second, we must solve





M + γ∆tKI γ∆tKI

γ∆tKI γ∆tKI+E









V n+1
m

un+1
E



 =





MV n
m − (1 − γ)∆t(KIV ∗

m + KIu∗E)

0



 , (4.2.4)

to find the approximations for V n+1
m and un+1

E . These systems are also solved with the conjugate

gradient solver using the same convergence criterion discussed above.

For the time discretization of the cell model ODEs (4.2.1), we use an explicit Runge–Kutta–

Fehlberg embedded 4(3) pair [16] with adaptive time steps within the overall time step ∆t of the

splitting method. The relative and absolute tolerances in all the experiments reported here are

set to 10−8 and 10−5, respectively, which are the default values in PyCC. Less stringent tolerances

did not reduce the overall execution times by more than a few per cent, and more stringent ones

generally increased execution times. In both cases, the overall errors were unchanged to 3 digits.

4.2.2 Order of Convergence

Because extremely fine spatial and temporal resolutions are required to produce a reference solution,

for convergence testing we consider a simplified problem with a restricted circular geometry. We

assume the solution is rotationally invariant, depending only on the the radius r. To generate a

one-dimensional reference solution for a rotationally invariant circular problem we first recall the

mapping between polar coordinates and Cartesian coordinates

x = r cosφ,

y = r sinφ,

r = (x2 + y2)1/2,

φ = arctan
y

x
.

Using this transformation the rotationally invariant bidomain equations are

r
∂Vm

∂t
+ rIion =

∂

∂r

(

σIr
∂Vm

∂r

)

+
∂

∂r

(

σIr
∂uE

∂r

)

,

0 =
∂

∂r

(

σIr
∂Vm

∂r

)

+
∂

∂r

(

(σI + σE)r
∂uE

∂r

)

.

See, e.g., [60] for full details.

Reference solutions were generated for this model coupled with two cell models, the FHN model,

discussed in section 2.2.1, and the model of Winslow et al., discussed in section 2.2.4. For the

transmembrane potentials, the initial condition for the FHN model is
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Table 4.7: Reference solution parameters.

Parameter Value Units
σI 1.5 mS/cm
σE 1.0 mS/cm
∆x 0.000625 cm
∆t 0.001 ms

Vm(r, 0) =







−20 mV, r ≤ 0.2 cm,

−80 mV, r > 0.2 cm,

and for the model of Winslow et al. it is

Vm(r, 0) =







−20 mV, r ≤ 0.2 cm,

−95.87 mV, r > 0.2 cm.

Parameters common to both models are listed in Table 4.7. In both cases, we use constant scalar

conductivities with values taken from [31]. Following [60], the integration is performed using second-

order Strang splitting (Θ = 1/2) with CN to solve (4.2.2) and constant values ∆r = 1/1600 cm

and ∆t = 0.001 ms. Further refinements indicate that the solution has converged to approximately

8 figures on this mesh. The final time for each model is chosen such that an action potential has

begun at each of the points in the circle where a stimulus was applied. Due to the differing upstroke

durations of the models, these times are 10.0 ms for the FHN model and 2.0 ms for the model of

Winslow et al.

Numerical experiments were performed to determine the order of convergence using the SDIRK

method instead of CN to solve (4.2.2). Similar to [60], the spatial domain for our numerical

experiments was the unit circle (0 < r ≤ 1). An initial value of Vm = −20 mV is applied at

all nodes within a circle centred at (0, 0) with radius 0.2 cm. The time step-size ∆t and the

mesh spacing ∆r are halved from one experiment to the next. The error is computed for each

experiment by comparing it to the reference solution using the L2 norm. We then compute the

order of convergence using

α =
log(ǫ1/ǫ2)

log(∆t1/∆t2)
,

where ∆t1 and ∆t2 are two successive step-size choices and ǫ1 and ǫ2 are the corresponding errors.

Tables 4.8 and 4.9 demonstrate the expected second-order convergence results when using the

SDIRK method. The times at which the convergence is measured have been chosen such that all

the points in the stimulus circle have just generated an action potential. Convergence results for

the CN and BE methods for a similar situation were presented in [59], so they are omitted here.

We note that finer time and spatial steps must be used before second-order convergence is observed
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Table 4.8: Convergence results for the FHN model with errors computed at t =
10.0 ms.

∆t ∆x L2 error α
1/8 0.430 1.32E–1 –
1/16 0.215 3.38E–2 1.96
1/32 0.108 8.61E–3 1.97
1/64 0.054 2.14E–3 2.01

Table 4.9: Convergence results for the model of Winslow et al. with errors com-
puted at t = 2.0 ms.

∆t ∆r L2 error α
1/16 0.215 5.77E–1 –
1/32 0.108 1.70E–1 1.76
1/64 0.054 4.12E–2 2.05
1/128 0.027 9.91E–3 2.06

for the model of Winslow et al. relative to the FHN model. This can be attributed to the much

faster upstroke in the model of Winslow et al. This quick upstroke leads to a sharper wavefront

that requires more mesh points in both time and space to resolve accurately. In both cases, the

results using the SDIRK method are qualitatively similar to those obtained using CN in [59].

4.2.3 Numerical Experiments and Results

Unphysical oscillations can be seen in the solution produced using CN for the following scenario,

which is similar to an experiment described in [68]. The spatial domain is a square with 1 cm

edges discretized uniformly with N = 10 201 nodes and 20 000 triangles for a spatial resolution

of ∆x = 0.01 cm. We use conductivities 2.63 mS/cm along the fibre in both the intracellular

and extracellular conductivity tensors, 0.263 mS/cm perpendicular to the fibre in intracellular

conductivity tensor, and 1.087 mS/cm in extracellular conductivity tensor. For this experiment we

used the LR model, discussed in section 2.2.2, as the cell model; we note that unphysical oscillations

were observed in all but the simplest cell models with which we have experimented. We use this

model for our experiment because it produces particularly dramatic oscillations. A stimulus is

applied to the lower left-hand corner of the square, causing an excitation wave to spread across the

square. For comparison purposes, we generate a reference solution with CN with ∆x = 0.001 cm

and ∆t = 0.001 ms.

The oscillations in the solution produced using CN at a particular spatial point are demonstrated

in Figure 4.2b. These oscillations are attenuated during the plateau phase, at which point the

solution looks more physically reasonable. In Figure 4.3b, the solution using CN is displayed over
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Figure 4.2: Plot of the transmembrane potential at (0.25, 0.25) using ∆t =
0.5, 0.55, 0.4 ms for CN, SDIRK, and BE, respectively.

(a) Reference Solution (b) CN

(c) SDIRK (d) BE

Figure 4.3: Plot of the transmembrane potential at t = 10 ms using ∆t =
0.5, 0.55, 0.4 ms for CN, SDIRK, and BE, respectively.
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Figure 4.4: Plot of the transmembrane potential at (0.25, 0.25) using ∆t =
0.125, 0.15, 0.1 ms for CN, SDIRK, and BE, respectively.

(a) Reference Solution (b) CN

(c) SDIRK (d) BE

Figure 4.5: Plot of the transmembrane potential at t = 10 ms using ∆t =
0.125, 0.15, 0.1 ms for CN, SDIRK, and BE, respectively.
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the whole domain. Unphysical oscillations can be seen across the action potential wavefront. The

corresponding plots for SDIRK and BE can be seen in Figures 4.2c, 4.3c, 4.2d, and 4.3d, respectively.

Comparing these solutions to the reference solution presented in Figures 4.2a and 4.3a, there is some

obvious error, but it is also clear that neither SDIRK nor BE exhibit any unphysical oscillations.

4.2.4 Comparison of CN, SDIRK, and BE

To compare the performance of the CN, SDIRK, and BE methods, two metrics are used to evaluate

the quality of the solution. The first metric is a weighted RRMS error defined by

ǫRRMS =

∑

i ∆Āi RRMSi
∑

i Āi
, (4.2.5)

where RRMSi is the RRMS error, (3.2.7), at a point i in the domain, and ∆Āi is the average area

of the triangles containing point i. We consider a solution acceptable if ǫRRMS < 5%. This may

generally be considered to be a rather stringent error tolerance from a computational engineering

point of view; however such tolerances may be necessary to obtain meaningful data.

The second metric is based on a physiological feature of interest, the conduction velocity, which

is computed as follows. The time at which top right-hand corner exceeds the threshold −10 mV was

recorded. The conduction velocity is then given by the distance between the two corners divided

by the recorded time.

Table 4.10: Weighted RRMS errors computed with (4.2.5).

Method Coarse ∆t Fine ∆t
CN 3.025E–1 2.72E–2

SDIRK 2.647E–1 9.16E–2
BE 2.649E–1 1.413E–1

Solutions obtained with the same computational cost using SDIRK and BE are also given in

Figures 4.2 and 4.3; i.e., for each method, we find a step-size that requires approximately the same

amount of CPU time to perform the simulation. Experiments were performed using a variety of

CPU times, but we only present results for two sets of step-sizes to illustrate the two distinct cases

we observed. The first is a set of coarse time steps, and the second is a set of fine time steps. In

the case of the set of coarse time steps, we use ∆t = 0.5 ms for CN, ∆t = 0.55 ms for SDIRK,

and ∆t = 0.4 ms for BE. Solutions obtained for these combinations of a time step and method

are displayed in Figures 4.2 and 4.3. In the case of the set of fine time steps, we use ∆t = 0.125

ms for CN, ∆t = 0.15 ms for SDIRK, and ∆t = 0.1 ms for BE. In this case CN does not produce

noticeable unphysical oscillations. Solutions obtained for these combinations of a time step and

method are displayed in Figures 4.4 and 4.5.

Weighted RRMS errors computed with (4.2.5) are presented in Table 4.10. In the case of the set
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of coarse time steps, CN produces more error than both SDIRK and BE. SDIRK and BE produce

about the same amount of error, despite the larger step used by SDIRK. However, in all three cases

the error is larger than 5%. So, although SDIRK can eliminate unphysical oscillations, it is unable

to satisfy the 5% weighted RRMS tolerance. In the case of the set of the set of fine time steps,

CN is the most accurate method. Comparing CN and SDIRK, we see that SDIRK has about three

times more error for the same amount of computation time. Comparing CN and BE, we see that

BE has about five times more error for the same amount of computation time. Hence the efficiency

advantages of second-order methods over first-order methods remain present.

Table 4.11: Conduction velocity in mm/s. Note that the conduction velocity of
the reference solution is 505 mm/s.

∆t CN SDIRK BE

1 – 288 220

1/2 336 344 325

1/4 475 445 379

1/8 491 479 426

Table 4.12: Conduction velocity in mm/s.

∆t CN SDIRK BE

Coarse Time Steps 336 347 343

Fine Time Steps 491 469 439

The results for conduction velocity are presented in Tables 4.11 and 4.12. Table 4.11 shows

the relationship between conduction velocity and time step. This relationship has been shown

before (see, e.g., [46]) and is presented here only to give some context to the results in Table 4.12.

Table 4.12 gives the conduction velocity for the time steps used above. For fine time steps, CN

is able to most accurately capture the conduction velocity. For coarse time steps, SDIRK is able

to most accurately capture the conduction velocity. In other words, the most accurate method

with respect to (3.2.7) is also the most accurate method with respect to conduction velocity. The

large difference between the conduction velocity for the set of coarse time steps and the reference

conduction velocity helps to explain the large error seen for all three methods. The slow conduction

velocity means that there are large errors at each node between the edge of the wavefront in the

numerical solution and the edge of the wavefront in the reference solution.

We have tested the robustness of the performance of CN in other experiments designed to

increase the stiffness. These included lowering the conductivities by an order of magnitude to

reflect the lowest values we have observed in the literature, using more realistic irregular domains,

and using the much stiffer cell model of Winslow et al. Although in these experiments we found

the differences in the performance of the CN and SDIRK were made smaller, CN still produced a
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superior solution in all cases. Because these experiments did not present any different or additional

conclusions, we omit further discussion.

Overall, the general conclusion is that for a given amount of execution time, the SDIRK method

produces the most accurate solutions for coarse error tolerances (ǫRRMS > 5%), and CN produces

the most accurate solutions for stringent error tolerances (ǫRRMS ≤ 5%). In other words, the

bidomain model is mildly stiff under the conditions investigated here.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

We present conclusions for the two sets of experiments in sections 5.1.1 and 5.1.2.

5.1.1 Single Cell Experiments

We compared the performance of several numerical methods for approximating solutions to ODEs

found in four popular mathematical models of cardiac electrical activity. In particular, we compared

the performance two IMEX-RK methods (ARK3 and ARK5) to other commonly used numerical

methods for these models, i.e., FE, ERK4, RL, ode23s, ode23t, ode23tb, DP, SDIRK4, and

RADAU5.

For constant step-sizes, the RL method is the most efficient for all four models. It ranges from

being approximately two times faster than the FE method for the WIN model to approximately

5–10 times faster than FE for the other models.

For variable step-sizes, the ARK methods outperformed the Dormand–Prince method for all

four models. We obtained qualitatively similar results from a comparison of the ARK methods

with the Bogacki–Shampine 3(2) method, which is the underlying method behind Matlab’s ode23

routine; we do not comment on this further.

Overall, a variable step-size implementation of ARK3 or ARK5 with a customized linear system

solver was the most efficient numerical method for the CRT and PB models. For the LR and WIN

models, both ARK3 and ARK5 outperform seven of the ten other numerical methods but do not

outperform ode23s, ode23t, and ode23tb. For these two models, ode23s was the most efficient of

all the numerical methods studied. For the WIN model, ode23tb was as efficient as ode23s.

The results in this experiment indicate that it is generally advisable to use a numerical method

with an inexpensive implicit component and implemented with variable step-sizes and specialized

techniques that take advantage of specific problem structure. When variable step-sizes are not

possible, the RL method is the most efficient method.

The results of this experiment only considered ODE models of one cell. Further investigations

of models involving large numbers of cells coupled with PDEs in two or three dimensions is nec-
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essary to fully establish the potential of the results presented here. In particular, linearly implicit

IMEX operator-splitting methods that do not rely on constant step-sizes may lead to substantial

performance gains.

5.1.2 Two-Dimensional Experiments

We have investigated numerical methods within a commonly used operator splitting technique for

solving the bidomain model. Specifically we have considered a two-stage, second-order, L-stable

SDIRK method to solve the split linear PDE system (4.2.2) as an alternative to the popular CN

and BE methods. The second-order convergence of using the SDIRK method was demonstrated

for two cases: the bidomain model coupled with the FHN model and the model of the Winslow et

al. Unphysical oscillations were produced when using CN; the use of the L-stable SDIRK or BE

methods was shown to eliminate such oscillations. In particular, for coarse time steps (moderate

error tolerances), the use of CN produced noticeable unphysical oscillations and about 1.2 times

more error than SDIRK for the same amount of computation time. For fine time steps (stringent

error tolerances), the use of CN produced a more accurate solution than both SDIRK and BE for

the same amount of computation time. In our experiments, the solution obtained using the SDIRK

method contained about three times more error than that produced by using CN. We confirmed

that in both cases the method with the lowest weighted RRMS error (4.2.5) was also the method

that best approximated the conduction velocity.

Overall, our experiments indicate that in two-dimensional simulations with a weighted RRMS

error tolerance of 5%, the use of second-order operator splitting with the CN method delivers the

most accurate solutions for a given amount of computation time. That is, we did not find that the

stronger damping properties of the SDIRK method provided a computational advantage at these

tolerances, implying that under these conditions the bidomain model is only mildly stiff.

5.2 Future Work

This work opens up several directions that can be investigated from this point.

• Investigate the efficiency of IMEX-RK methods for solving PDE models.

Some preliminary work for this step was completed in [12], which looked at the solution of

the monodomain model coupled with the LR model. ARK5 was compared to the operator

splitting method of Qu and Garfinkel [47], and it was demonstrated that ARK5 can be up

to 4 times faster. The comparison was done with a combination of Comsol Multiphysics,

Matlab, and odeToJava. Unfortunately, this combination was unable to support anything

more than a very small mesh and, consequently, it was unclear how the results would scale

to mesh sizes more frequently seen in practice. Hence, the results are not entirely clear and
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as such are not reported on further. It does, however, show that this is a direction worthy of

further investigation.

Due to the troubles with the combination of Comsol Multiphysics, Matlab, and odeToJava,

a different framework for these numerical experiments is needed. As an alternative, a study

using propag is proposed. This is software for large scale simulation of depolarization and

repolarization in the human heart developed at l’Université de Montréal. Some preliminary

work has been done to implement an IMEX-RK solver inside of this software package to

complete this task.

• Optimizing IMEX-RK methods for solving cardiac electrophysiological models.

We have only investigated the use of two particular IMEX-RK methods but it may be possible

to design even better IMEX-RK methods. It would be interesting to see if it is possible to

improve on these results with a more suited IMEX-RK technique, ideally with one that is

designed with a particular model in mind. This would begin with designing methods for single

cell models but it could be extended for the PDE models in the long term.

Similarly, the choice of splitting is not necessarily optimal. It might be fruitful to examine

other ways to split the terms in cardiac electrophysiological models when using an IMEX-RK

method.

• Implement and study a new second-order operator splitting method.

The stronger damping properties of the SDIRK method did not provide an advantage for the

experiments presented in this thesis. However, more demanding simulations (for example,

using unstructured grids on realistic highly irregular 3D geometries) may increase the stiffness

of the model and ultimately favour the use of SDIRK. With minimal programming effort,

experiments could be performed in 3D similar to those presented in this thesis in 2D. So this

is a natural next step.
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Appendix A

Mathematical Models

A.1 The Luo–Rudy model

Inward currents

Fast sodium current

INa = GNa ·m3 · h · j · (Vm − ENa) (A.1.1)

Activation gate, m

dm

dt
= αm(1 −m) − βmm (A.1.2a)

αm =
0.32(Vm + 47.13)

1 − e−0.1(Vm+47.13)
(A.1.2b)

βm = 0.08e−Vm/11 (A.1.2c)

Fast inactivation gate, h

dh

dt
= αh(1 − h) − βhh (A.1.3a)

αh =







0.135e(Vm+80)/−6.8 Vm < −40mV

0 Vm ≥ −40mV
(A.1.3b)

βh =















3.56e0.079Vm + 3.1 · 105e0.35Vm Vm < −40mV

1

0.13(1 + e(Vm+10.66)/−11.1)
Vm ≥ −40mV

(A.1.3c)

Slow inactivation gate, j

dj

dt
= αj(1 − j) − βjj (A.1.4a)

αj =















−1.2714 · 105e0.2444Vm − 3.474 · 10−5e−0.04391Vm · (Vm + 37.78)

1 + e0.311(Vm+79.23)
Vm < −40mV

0 Vm ≥ −40mV

(A.1.4b)

βj =























0.1212e−0.01052Vm

1 + e−0.1378(Vm+40.14)
Vm < −40mV

0.3e−2.535·10−7Vm

1 + e−0.1(Vm+32)
Vm ≥ −40mV

(A.1.4c)

Slow inward current

Isi = Gsi · d · f · (Vm − Esi) (A.1.5)

Esi = 7.7 − 13.0287 · ln ([Ca]i) (A.1.6)
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Activation gate, d

dd

dt
= αd(1 − d) − βdd (A.1.7a)

αd =
0.095e−0.01(Vm−5)

1 + e−0.072(Vm−5)
(A.1.7b)

βd =
0.07e−0.017(Vm+44)

1 + e0.05(Vm+44)
(A.1.7c)

Inactivation gate, f

df

dt
= αf (1 − f) − βff (A.1.8a)

αf =
0.012e−0.008(Vm+28)

1 + e0.15(Vm+28)
(A.1.8b)

βf =
0.0065e−0.02(Vm+30)

1 + e−0.2(Vm+30)
(A.1.8c)

Calcium uptake
d ([Ca]i)

dt
= −10−4Isi + 0.07(10−4 − [Ca]i) (A.1.9)

Outward Currents

Time-dependent potassium current

IK = GK ·X ·Xi · (Vm − EK) (A.1.10)

GK = 0.282 ·
√

[K]o/5.4 (A.1.11)

Activation gate, X

dX

dt
= αX(1 −X) − βXX (A.1.12a)

αX =
0.0005e0.083(Vm+50)

1 + e0.057(Vm+50)
(A.1.12b)

βX =
0.0013e−0.06(Vm+20)

1 + e−0.04(Vm+20)
(A.1.12c)

Inactivation gate, Xi

Xi =















2.837(e0.04(Vm+77) − 1)

(Vm + 77)e0.04(Vm+35)
Vm > −100mV

1 Vm ≤ −100mV

(A.1.13)

Time-independent potassium current

IK1 = GK1 · K1∞ · (Vm − EK1) (A.1.14)

GK1 = 0.6047 ·
√

[K]o/5.4 (A.1.15)
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Inactivation gate, K1

K1∞ =
αK1

αK1 + βK1
(A.1.16a)

αK1 =
1.02

1 + e0.2385(Vm−EK1−59.215)
(A.1.16b)

βK1 =
0.49124e0.08032(Vm−EK1+5.476) + e0.06175(Vm−EK1−594.31)

1 + e−0.5143(Vm−EK1+4.753)
(A.1.16c)

Plateau potassium current

IKp = GKP · Kp · (Vm − EKp) (A.1.17)

EKp = EK1 (A.1.18)

Kp =
1

1 + e(7.488−Vm)/5.98
(A.1.19)

Background potassium current

Ib = Gb · (Vm − Eb) (A.1.20)

Total ionic current

Iion = INa + Isi + IK + IK1 + IKp + Ib

= GNa ·m3 · h · j · (Vm − ENa) +Gsi · d · f · (Vm − Esi)

+GK ·X ·Xi · (Vm − EK) +GK1 · K1inf · (Vm − EK1)

+GKP · Kp · (Vm − EKp) +Gb · (Vm − Eb) (A.1.21)

For an individual cardiac cell we have that the transmembrane potential Vm is given by [34]:

dVm

dt
= − 1

Cm
(Iion + Ist), (A.1.22)

where Cm is the membrane capacitance and Ist is the stimulus current applied by the sinoatrial
node.

The following table shows the values of the channel conductances, the reversal potentials for
the ions, and other parameters.

Table A.1: Parameters for the Luo-Rudy Phase I model; the conductances are in
mS/cm2 and the reversal potentials in mV [9].

Channel Reversal Other Parameters
Conductance Potential

GNa = 23.0 ENa = 54.4 Resting Membrane Potential Vrest = – 84.0mV
Gsi = 0.09 Esi = 118.7 Membrane Threshold Potential Vthreshold = – 60mV
GK = 0.282 EK = –77 [K]o = 5.4mM
GK1 = 0.6047 EK1 = –87.2 Membrane Capacitance Cm = 1 µF/cm2

GKp = 0.0183 EKp = –87.2
Gb = 0.03921 Eb = –59.87
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A.2 The model of Courtemanche et al.

The transmembrane potential, Vm, is given by

dVm

dt
= − 1

Cm
(Iion + Ist),

where Iion is defined as

Iion = INa + IK1 + Ito + IKur + IKr + IKs

+ ICa,L + Ip,Ca + INaK + INaCa + Ib,Na + Ib,Ca,

and Ist is the stimulus current. There are 15 gating equations in the form

dy

dt
=
y∞ − y

τy
, (A.2.1)

where y is the gating variable and yinf and τy are defined as

y∞ =
αy

αy + βy
,

τy =
1

αy + βy
,

with both αy and βy being functions of V . The remaining ODEs relate to ionic concentrations and
are defined as

d[Na+]i
dt

=
−3INa,K − 3INaCa − Ib,Na − INa

FVi
,

d[K+]i
dt

=
2INa,K − IK1 − Ito − IKur − IKr − IKs − Ib,K

FVi
,

d[Ca2+]i
dt

=
B1

B2
,

B1 =
2INaCa − Ip,Ca − ICa,L − Ib,Ca

2FVi

+
Vup(Iup,leak − Iup) + IrelVrel

Vi
,

B2 = 1 +
[Trpn]maxKm,Trpn

([Ca2+
i ] + Km,Trpn)2

+
[Cmdn]maxKm,Cmdn

([Ca2+]i + Km,Cmdn)2
,

d[Ca2+]up

dt
= Iup − Iup,leak − Itr

Vrel

Vup
,

d[Ca2+]rel
dt

= (Itr − Irel)
{

1 +
[Csqn]maxKm,Csqn

([Ca2+]rel + Km,Csqn)2

}−1

.

For further details, see [11].

A.3 The model of Winslow et al.

The transmembrane potential, Vm, is defined as

dVm

dt
= −(INa + ICa + ICa,K + IKr + IKs + Ito1 + IK1 + IKp

+INaCa + INaK + Ip(Ca) + ICa,b + INa,b).
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There are eight gating equations to describe sodium and potassium:

dm

dt
= αm(1 −m) − βmm,

dh

dt
= αh(1 − h) − βhh,

dj

dt
= αj(1 − j) − βjj,

dXKr

dt
= K12(1 −XKr) −K21XKr),

dXKs

dt
=

(X∞
Ks −XKs)

τXKs

,

dXto1

dt
= αXto1

(1 −Xto1) − βXto1
Xto1,

dYto1

dt
= αYto1

(1 − Yto1) − βYto1
Yto1,

dy

dt
=

y∞ − y

τy
.

There are a number of equations related to calcuim concentration:

dPC1

dt
= −k+

a [Ca2+]nssPC1
+ k−a PO1

, (A.3.1)

dPO1

dt
= k+

a [Ca2+]nssPC1
− k−a PO1

,−k+
b [Ca2+]mssPO1

+k−b PO2
− k+

c PO1
+ k−c PC2

, (A.3.2)

dPO2

dt
= k+

b [Ca2+]mssPO1
− k−b PO2

, (A.3.3)

dPC2

dt
= k+

c PO1
− k−c PC2

. (A.3.4)

The following system describes the membrane current of calcium through the so-called L-type
channels.

dC0

dt
= βC1 + ωCCa0 − (4α+ γ)C0,

dC1

dt
= 4αC0 + 2βC2 +

ω

b
CCa1 − (β + 3α+ γa)C1,

dC2

dt
= 3αC1 + 3βC3 +

ω

b2
CCa2 − (2β + 2α+ γa2)C2,

dC3

dt
= 2αC2 + 4βC4 +

ω

b3
CCa3 − (3β + α+ γa3)C3,

dC4

dt
= αC3 + gO +

ω

b4
CCa4 − (4β + f + γa4)C4,

dO

dt
= fC4 − gO,

dCCa0

dt
= β′CCa1 + γC0 − (4α′ + ω)CCa0,
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dCCa1

dt
= 4α′CCa0 + 2β′CCa2 + γaC1 − (β′ + 3α′ +

ω

b
)CCa1,

dCCa2

dt
= 3α′CCa1 + 3β′CCa3 + γa2C2 − (2β′ + 2α′ +

ω

b2
)CCa2,

dCCa3

dt
= 2α′CCa2 + 4β′CCa4 + γa3C3 − (3β′ + α′ +

ω

b3
)CCa3,

dCCa4

dt
= α′CCa3 + γa4C4 − (4β′ + f ′ +

ω

b4
)CCa4,

Intracellular calcium buffering is described by

d[HTRPNCa]

dt
= k+

htrpn[Ca2+]i([HTRPN]tot − [HTRPNCa])

−k−htrpn[HTRPNCa],

d[LTRPNCa]

dt
= k+

ltrpn[Ca2+]i([LTRPN]tot − [LTRPNCa])

−k−ltrpn[LTRPNCa],

where the k-coefficients are constants.

Intracellular ionic concentrations are described by:

d[Na+]i
dt

= −(INa + INa,b + 3INaCa + 3INaK)fracAcapCscVmyoF,

d[K+]i
dt

= −(IKr + IKs + Ito1 + IK1,

+IKp + ICa,K − 2INaK)
AcapCsc

VmyoF
,

d[Ca2+]i
dt

= βi

[

Jxfer − Jup − Jtrpn

−(ICa,b − 2INaCa + Ip(Ca))
AcapCsc

2VmyoF

]

,

d[Ca2+]ss
dt

= βss

(

Jrel
VJSR

Vmyo
− Jxfer

Vmyo

Vss
− ICa

AcapCsc

2VmyoF

)

,

d[Ca2+]JSR

dt
= βJSR(Jtr − Jrel),

d[Ca2+]NSR

dt
= Jup

Vmyo

VNSR
− Jtr

VJSR

VNSR
.

There are 33 ODEs in total. See [69] for details.

A.4 The Puglisi–Bers model

The transmembrane potential, Vm, is given by

dVm

dt
=

Istim − (INa + ICaL
+ ICaT

+ IKr + IKs + INaCa + IK1 + IKp)

C

+
Istim − (IpCa

+ INab
+ ICab

+ INaK + Ito + ICl(Ca))

C
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There are nine gating equations:

dm

dt
= αm(1 −m) − βmm,

dh

dt
= αh(1 − h) − βhh,

dj

dt
= αj(1 − j) − βjj,

dd

dt
= αd(1 − d) − βdd,

df

dt
= αf (1 − f) − βff,

db

dt
=

b∞ − b

τb
,

dg

dt
=

g∞ − g

τg
,

dXr

dt
=

Xr∞
−Xr

τXr

,

dXs

dt
=

Xs∞
−Xs

τXs

There are seven equations to describe ionic concentrations:

dNai

dt
= −(INa + ICaNa + INab

+ 3INaCa + 3INaK)
Acap

VmyoF
,

dCai

dt
= ((ICaCa + IpCa

+ ICab
+ ICaT

) − INaCa)
Acap

2VmyoF
+ Irel

VJSR

Vmyo
+ (Ileak − Iup)

VNSR

Vmyo
,

dKi

dt
= −(ICaK + IKr + IKs + IK1 + IKp + Ito − 2INaK)

Acap

VmyoF
,

dKo

dt
= (ICaK + IKr + IKs + IK1 + IKp + Ito − 2INaK)

Acap

VcleftF
,

dCaJSR

dt
= −(Irel − Itr

VNSR

VJSR
),

dCaNSR

dt
= −(((Ileak + Itr) − Iup)),

dCafoot

dt
= (ICaCa)

Acap

2VmyoF
RAV

There are 17 ODEs in total. See [45] and the references within for more details.
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