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On the performance of an implicit-explicit
Runge–Kutta method in models of cardiac electrical

activity
Raymond J. Spiteri and Ryan C. Dean

Abstract— Mathematical models of electric activity in
cardiac tissue are becoming increasingly powerful tools
in the study of cardiac arrhythmias. Considered here
are mathematical models based on ordinary differential
equations (ODEs) that describe the ionic currents at the
myocardial cell level. Generating an efficient numerical
solution of these ODEs is a challenging task, and in
fact the physiological accuracy of tissue-scale models is
often limited by the efficiency of the numerical solution
process. In this paper, we examine the efficiency of the
numerical solution of 4 cardiac electrophysiological models
using implicit-explicit Runge–Kutta (IMEX-RK) splitting
methods. We find that variable step-size implementations
of IMEX-RK methods (ARK3 and ARK5) that take
advantage of Jacobian structure clearly outperform the
methods commonly used in practice.

Keywords: splitting methods; efficient numerical
methods; implicit-explicit Runge–Kutta methods; sim-
ulation of electrophysiological models; Rush–Larsen
method; ordinary differential equations.

I. INTRODUCTION

Computer simulation is becoming an important tool
in cardiovascular research. Mathematical models of the
heart can be used to simulate heart conditions and the
effects of certain drugs designed to treat them. Presently,
the development of a drug often costs hundreds of
millions of dollars [1]. One aim of computer simulation
is to reduce this cost, e.g., by reducing the number of
physical experiments needed in designing a drug.

Electrophysiological models of the heart describe
how electricity flows through the heart, controlling its
contraction. In this paper, we consider 4 mathematical
models for the flow of ionic currents at the myocardial
cell level. The models consist of systems of ordinary dif-
ferential equations (ODEs). Cardiac electrophysiological
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models are often based on the Nobel prize-winning work
of Hodgkin and Huxley [2] in the 1950s that modelled
neural tissue mathematically as a circuit. Modern cardiac
electrophysiological models adapt the work of Hodgkin
and Huxley to describe electrical activity in the heart and
include data gathered from experiments to form models
with increasing physiological accuracy.

A major barrier to obtaining the most useful data from
tissue-scale electrophysiological models of the heart is
the challenge of performing the simulations efficiently.
Often the physiological accuracy of the mathematical
model must be sacrificed for a simulation to become
feasible; see, e.g., [3], [4], [5], [6]. The ODE systems
describing the cellular dynamics in these models are
non-linear and stiff (see, e.g., [7]). The consequence
of stiffness is that the speed of the solution process is
limited by considerations of numerical stability instead
of accuracy. Hence the solution process can potentially
be made more efficient through the use of appropriate
numerical algorithms.

In this paper, we investigate the efficiency of implicit-
explicit Runge–Kutta (IMEX-RK) splitting methods
(see, e.g., [8]) for the simulation of 4 cardiac electrophys-
iological models. Cardiac electrophysiological models
contain linear and non-linear terms as well as stiff and
non-stiff terms, so IMEX methods are a natural choice
for their numerical solution. An IMEX-RK method uses
both an implicit RK (IRK) method and an explicit RK
(ERK) method to approximate the solution to an ODE.

The use of splitting methods for cardiac simulations
is quite common, particularly for simulations in which
the ODEs for myocardial cell models are coupled with
partial differential equations (PDEs) describing the flow
of electricity through myocardial tissue. For example,
a second-order accurate operator splitting method for
the monodomain model of myocardiac tissue is studied
in [9]. The coupled non-linear PDE model is split into
an uncoupled linear parabolic PDE and a system of non-
linear ODEs. The PDE is then solved with either the
forward Euler method or an alternating direction implicit
method, and the ODE system is solved with the Rush–
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Larsen method [10]; see also below. This splitting is
also used with first- and second-order IMEX schemes in
[11] for both the monodomain and bidomain models. An
implicit method is used for the PDE(s), and an explicit
method is used to integrate the ODEs. The use of both a
second-order Crank–Nicolson method and a first-order
semi-implicit method to solve the bidomain model is
investigated in [12]. These methods were optimized by
splitting the non-linear cell model into two components,
one with positive eigenvalues and another with negative
eigenvalues. This work is extended in [13], where the cell
model is split from the PDEs and solved with the back-
ward Euler method and further optimized by deriving an
explicit scheme to solve the ODEs. The work in [12] is
extended in [14] to create a first-order method to simulate
the flow of electricity in the heart and the surrounding
torso. In [15] the ODEs are separated as in [9], and then
the approach from [14] is used to solve the PDEs in
the heart and torso, resulting in a second-order method.
The work of [12] is also extended in [16] to include
additional complexities such as rotational anisotropy
and blood layer boundary conditions. Other numerical
methods used to solve the ODEs in such models include
singly diagonally implicit RK (SDIRK) methods, fully
implicit RK methods, and multi-step methods based on
backward differentiation formulas (BDFs); see below
and also, e.g., [17].

In this paper, we consider 4 mathematical models
of cardiac electrophysiology: the Luo–Rudy model of
guinea pig ventricular tissue [18], the Courtemanche
et al. model of human atrial tissue [19], the Winslow
et al. model of canine ventricular tissue [20], and the
Puglisi–Bers model of rabbit ventricular tissue [21]. We
perform a thorough comparison of the performance of
two specific IMEX-RK methods, denoted here as ARK3
and ARK5 [22], respectively, to numerical methods
commonly used in practice for simulating these 4 mod-
els. We also consider problem-specific optimizations to
the IMEX-RK methods described. The results presented
have the obvious limitation that they are based on single-
cell models, and thus further studies are necessary to
fully establish their applicability to tissue-scale simula-
tions. However, the present work can provide guidance
for development of efficient splitting methods for the
simulation of PDE models that use variable step-size
ODE solvers for the cellular dynamics.

The rest of this paper is organized as follows. In
Section II we give a brief introduction to mathematical
models of electrical activity in the heart. In Section III we
give a brief overview of the numerical methods used in
this paper for the numerical solution of the ODEs arising
from these models. In Section IV we discuss the results

of the numerical experiments. We find that a variable
step-size implementation of an IMEX-RK method with
a customized linear system solver clearly outperforms all
the commonly used numerical methods of which we are
aware. Finally in Section V we give some conclusions
and directions for future research.

II. ELECTRICAL ACTIVITY OF THE HEART

Because of their intricacy, obtaining physiologically
accurate mathematical models is a difficult task. A
further challenge to obtaining physiological accuracy is
that of performing the simulation efficiently. To move
effectively beyond models for one cell, enough cells must
be included in the model to realistically approximate
the geometry and physiology of the heart. Because the
heart has approximately1010 cells [23], any realistic
simulation will have enough cells (or clusters of cells) to
dramatically magnify any inefficiencies in the numerical
method. This has forced some researchers to reduce
the physiological accuracy of their models to allow the
simulation to be performed within an acceptable amount
of time; see e.g., [3], [4], [5], [6]. The models are
numerically stiff, and so standard (explicit) numerical
methods are often unable to provide efficient simulations.
If the efficiency of the simulation process can be signifi-
cantly improved, then greater physiological accuracy and
subsequently more useful data can be obtained.

A. The Luo–Rudy model of guinea pig ventricular tissue

In 1991 Luo and Rudy developed a model of guinea
pig ventricular action potentials based on a previous
model from Beeler and Reuter [24]. The Luo–Rudy
model [18] extended the Beeler–Reuter model to include
fast inward sodium and outward potassium currents to
make the model more physiologically accurate. The
general approach of these models is based on Hodgkin–
Huxley type formalism [2]; the Luo–Rudy model itself
consists of 8 nonlinear ODEs.

For an individual cardiac cell we have that the trans-
membrane potentialVm satisfies [18]:

dVm

dt
= −

1

Cm

(Iion + Ist), (1)

whereCm is the membrane capacitance,Iion is the total
transmembrane ionic current, andIst is the stimulus
current. An example of the evolution ofVm over time
for this model is given in Figure 1.

The Luo–Rudy model contains 6 ionic currents that
are determined by 6 gating variables [18]. The evolution
of each gating variabley is governed by a nonlinear ODE
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Fig. 1. Transmembrane potential over time in the Luo–Rudy model.
This is a numerical solution produced by ARK5 for equation (1)
coupled with 7 other ODEs [18] via theIion current as produced by
ARK5.

involving rate parametersαy andβy in the general form

dy

dt
=

y∞ − y

τy

, (2)

where

y∞ =
αy

αy + βy

and τy =
1

αy + βy

.

The remaining ODE in the Luo–Rudy model describes
calcium concentration in the cell:

d ([Ca]i)
dt

= −10−4Isi + 0.07(10−4 − [Ca]i), (3)

where[Ca]i is the intracellular calcium concentration and
Isi is the slow inward calcium current [18]. The 6 gating
equations of the form (2) are coupled with (1) and (3)
to form the complete Luo–Rudy model. Full details of
the model can be found in [18].

In 1994 Luo and Rudy published an improvement
to this model, now known as the Luo–Rudy Phase II
model [25], [26]. This model includes the actions of
ionic pumps and changes in ionic concentrations. It is
a more physiologically accurate yet more complicated
model than (1)–(3), consisting of 14 ODEs. We do not
consider the Luo–Rudy Phase II model in this study.

B. The Courtemanche et al. model of atrial tissue

In 1998 Courtemanche, Ramirez, and Nattel developed
a model of human atrial action potentials [19]. It was
developed in response to findings that show there are
important differences in human action potentials when
compared to those of other mammals frequently used
in models. Courtemanche et al. developed this model
with human data supplemented with animal data when
needed. The Courtemanche et al. model is an extension
of the Luo–Rudy Phase II model. It consists of 21 ODEs.
Full details of the model can be found in [19].

C. The Winslow et al. model of canine ventricular tissue

In 1999 Winslow, Rice, Jafri, Marbán, and O’Rourke
developed a model of canine ventricular tissue [20]. This
model is based on a guinea pig model that was an
extension of the Luo–Rudy Phase II model. The Winslow
et al. model was developed using experimental data to
modify the guinea pig model so that it would simulate
canine ventricular tissue. The Winslow et al. model
is particularly detailed when describing the dynamics
of Ca2+, which is an important consideration in heart
failure. It consists of 32 ODEs, making it the most
complex of the models in this study. Full details of the
model can be found in [20].

D. The Puglisi–Bers model of rabbit ventricular tissue

In 2001 Puglisi and Bers developed a model of rabbit
ventricular tissue [21]. Although rabbit ventricular tissue
is used frequently in experiment, no mathematical model
had been previously developed for it. This model was
adapted from the Luo–Rudy model to include data from
the literature and from the joint laboratory of Puglisi and
Bers. This model was designed to be a learning aid for
students as well as a tool for researchers to reproduce
experimental data via computer simulation. Thus, phys-
iological accuracy was of paramount importance. The
Puglisi–Bers model gives particular detail to calcium
handling in order to accurately simulate heart failure.
This model contains 17 ODEs. It is also referred to as
the LabHeart [21] model. Full details of the model can
be found in [21].

III. N UMERICAL METHODS

In this paper we focus on the solution of theinitial-
value problem(IVP) for ODEs, defined as

dy

dt
= f (t,y) , y(0) = y0, (4)

on the intervalt ∈ [0, tf ]. We now describe the numerical
methods compared here. We also describe aspects of
creating an efficient numerical simulation. Except for the
fully implicit methods studied, all numerical experiments
were run usingodeToJava [27], a Java-based problem-
solving environment for IVPs1. Details on how the fully
implicit methods were run are given below.

A. The Forward Euler Method

Arguably the simplest numerical method for approxi-
mating the solution of (4) isEuler’s method, or Forward

1Presently,odeToJava supports only ERK and linearly implicit
IMEX-RK methods.
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Euler (FE). One step of FE from(tn−1,yn−1) to (tn,yn)
is given by

yn = yn−1 + ∆tnf (tn−1,yn−1) ,

tn = tn−1 + ∆tn,

where yn ≈ y(tn). The time step∆tn := tn − tn−1

need not be constant for eachn. It is well known that
FE is first-order accurate [28], which is generally too
low for efficiency in practice. Nonetheless, because of its
simplicity, it is often used to simulate IVPs (4) associated
with models of cardiac activity, and hence it serves
as a useful benchmark against which to measure other
numerical methods.

B. Explicit Runge–Kutta Methods

The FE method can be viewed as the simplest of a
more general class of numerical methods for solving
IVPs known asexplicit Runge–Kutta(ERK) methods;
see, e.g., [7]. ERK methods aim to improve on the
FE method by increasing the accuracy of the numerical
solution by means of additionalf evaluations (orstages)
within a given time step. A generals-stage RK method
has the form

yn = yn−1 + ∆tn

s
∑

i=1

biki,

where fori = 1, 2, . . . , s,

ki = f



tn−1 + ∆tn ci,yn−1 + ∆tn

s
∑

j=1

aijkj



 ,

and can be summarized via theButcher tableau[7]:

c A

bT

A Runge–Kutta method isexplicit if A is strictly lower
triangular; otherwise it isimplicit. With ERK methods,
the stages can be computed successively and their contri-
butions combined to produce a high-order approximation
at the end of the step. With IRK methods, a (generally)
nonlinear system of equations must be solved at every
time step for all stages simultaneously. However, because
of their superior stability properties, IRK methods are
well-suited for stiff problems [7].

Perhaps the most popular high-order ERK method is
the classical RK method, which is a four-stage, fourth-

order ERK method, and which we denote by ERK4:
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Another popular ERK method is the Dormand–Prince
5(4) (DP) pair, which is of order 5 and is coupled with
a method of order 4 for error estimation and step-size
control [28]. This method is the basis of the popular
Matlab routineode45.

C. Fully Implicit Methods

We include 3 fully implicit methods in our study. The
first is arguably the simplest fully implicit method, the
backward Euler(BE) method, a one-stage, first-order
implicit RK (IRK) method with Butcher tableau

1 1
1

The second is the SDIRK method SDIRK4 of [29,
p. 107]. This is a 5-stage,L-stable method of order 4
with an embedded method of order 3.

The third method is the 3-stage Radau IIA method
RADAU5 of [29, p. 78]. It is a fully implicit RK method
of order 5 and has the property ofstiff decay[29].

We note that we only consider IRK and not BDF
methods in the present study. In the context of splitting
methods for mono- or bidomain models, the ODEs and
PDEs are only advanced over small intervals in time be-
fore updated solution information is exchanged between
systems. Results from [17] indicate that BDF methods
were not competitive with IRK methods in terms of
CPU time in such situations. Moreover, BDF methods
require storage of the solution from past steps. This
makes them less attractive than RK methods because this
extra storage requirement may consequently reduce the
overall resolution available for the simulation.

D. Implicit-Explicit Methods

When the right-hand side of an ODE can be written
as the sum of two terms

dy

dt
= fI (t,y) + fE (t,y) , (5)

it is often natural to consider approximating the contri-
butions offE(t,y) andfI(t,y) using different numerical
methods. Such methods are known asadditivemethods.
In general, when the right-hand side of an ODE can be
written as the sum ofn terms, these methods are called
n-additive methods. When the constituent numerical
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methods are RK methods, then they are known asn-
additive RK methods. Furthermore, ifdy/dt = fE(t,y)
is such that it is best approximated with an explicit
method anddy/dt = fI(t,y) is such that it is best
approximated with an implicit method, we may use an
IMEX method in an attempt to approximate the solution
to this ODE efficiently [8]. An example of when an
IMEX method would be useful is whenfE(t,y) consists
of non-stiff and/or nonlinear terms andfI(t,y) consists
of stiff and/or linear terms. Again, when the constituent
implicit and explicit methods are RK methods, we have
an IMEX-RK method.

For example [30], the combination of the FE and BE
methods gives the IMEX-RK method:

yn = yn−1 + ∆tn (fE (yn−1) + fI (yn)) .

More generally ans-stage IRK method with coeffi-
cientsA, c,b is combined with an(s + 1)-stage ERK
method with coefficientŝA, b̂, ĉ. As is conventional, we
assume that̂c = (0, c)T , and the IRK method is taken
to be an SDIRK method [30], [22]. An SDIRK method
has a lower triangularA with all diagonal elementsaii

non-zero and equal. This form ofA creates efficiencies
in the solution to the nonlinear equations for the stages
at each step, i.e., allowing each stage to be solved for
sequentially with the same Newton iteration matrix.

In this study, we consider the IMEX-RK meth-
ods ARK3(2)4L[2]SA and ARK5(3)8L[2]SA from [22],
which we denote by ARK3 and ARK5, respectively.
ARK3 is an IMEX-RK method having 4 stages and
order 3 with an embedded method of order 2 for error
estimation and automatic step-size control; ARK5 has 8
stages, order 5, and an embedded method of order 4.
The Butcher tableaux of ARK3 and ARK5 are listed in
Appendix C of [22].

We split the ODE (4) on each time step[tn−1, tn]
with the (default) dynamic splitting inodeToJava,
namely fI(t,y) := J(tn−1,yn−1)y(t) and fE(t,y) :=
f(t,y) − J(tn−1,yn−1)y(t), where J := ∂f/∂y. We
note that this splitting is such that only the linear term
is treated implicitly, and hence there is no need for a
Newton iteration when solving the implicit equations.
This makes the method similar toRosenbrock methods,
see, e.g., [8], which are also linearly implicit methods
but for ODEs (4) that are not split.

E. The Rush–Larsen Method

An alternative to using classical methods such as FE
that is popular in the cardiac simulation literature is the
Rush–Larsen(RL) method. The RL method advances the

solution to the gating equations (2) using

yn = y∞ + (yn−1 − y∞)e
−

∆tn

τy ,

which represents the exact solution of (2)assuming all
variables besidesy are constant. FE is then used to
advance the solution of the remaining equations. Using
this method the Luo–Rudy model, for example, is no
longer stiff [31]; i.e., the time step-size can be chosen
based on accuracy considerations. However, this method
is only first-order accurate and thus suffers from the
usual drawbacks of low-order methods.

F. Accuracy and Stability

An IVP is often calledstiff if the choice of step-size
∆tn of a numerical method is determined by stability
requirements rather than by accuracy requirements2.
Generally, the step-size required for a stiff problem is
much smaller than accuracy requirements dictate. In such
cases, the numerical solution is typically much more
accurate than required by the user.

When a numerical method is able to produce a stable
approximation, we are then interested in the accuracy
of the approximation. When the exact solution is not
known, we may be able to generate areference solution
by using a variable step-size solver with low error
tolerances until two approximations are produced that
agree to a desired number of significant digits. In this
study, we generate a reference solution by using a high-
order, variable step-size implicit solver and lowering the
error tolerances for successive approximations until two
approximations are identical for at least 10 significant
digits at N equally spaced output pointsti = itf/N ,
i = 1, 2, . . . , N , with N = 100. We can then measure the
error in the approximation,y, relative to the reference so-
lution, ŷ. A popular way to quantify error in the literature
on heart simulation is theRelative Root Mean Squared
(RRMS) errorof the transmembrane potential [32]:

RRMS :=

√

∑N
i=1

(Vi − V̂i)2
∑N

i=1
V̂ 2

i

,

whereVi is the numerical approximation and̂Vi is the
reference solution at timeti as described above. Given
the many approximations made in creating the model, an
RRMS error of5% is generally considered acceptable.

As a more familiar measure of error, we also quantify
error via theglobal error, which we define as

eglobal := max
i

|Vi − V̂i|, i = 1, 2, . . . , N.

2Arguably, there is no universally accepted definition of a stiff
problem, but this description of stiffness suffices for our study.
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IV. RESULTS

Using odeToJava we performed numerical
experiments with the FE, ERK4, RL, DP, BE, SDIRK4,
RADAU5, ARK3, and ARK5 methods and compared
their performance. Except forVm, the initial values of
the variables were taken to be those that correspond
to the heart in its resting state. For the Luo–Rudy
and Winslow et al. models, the initial values ofVm

were chosen to produce the effect of an explicit
stimulus current. That is, the initial values used for
Vm are above the thresholds for the cells to fire. For
the Courtemanche et al. and Puglisi–Bers models,
the initial values forVm were taken as their resting
values, and an explicit stimulus was applied as given
by (1). In particular, for the Courtemanche et al. model,
Ist = −2000 pA/pF from t = 0 to t = 2ms and 0
elsewhere; for the Puglisi–Bers model,Ist = −10
µA/µF from t = 1 to t = 5 ms and 0 elsewhere. The
specific initial values used forVm are listed in Table
I. See [18], [19], [20], [21] for complete listings of
the remaining initial values. These values may also be
accessed athttp://www.cellml.org/models/
under the directoriesluo rudy 1991 version04,
courtemanche ramirez nattel 1998 version02,
winslow rice jafri marban ororke 1999 version01,
andpuglisi bers 2001 version01, respectively.

TABLE I

INITIAL VALUES FOR Vm = Vrest .

Model Vrest

Luo–Rudy −35.0
Courtemanche et al.−81.2

Winslow et al. −35.0
Puglisi–Bers −85.5

The models were solved over time intervals repre-
senting one cardiac cycle. Different time intervals were
used due to specific physiological properties of the mam-
malian heart that each model represents. Accordingly,
the Luo–Rudy model was solved on the interval [0,450]
ms, the Courtemanche et al. model was solved on the
interval [0,500] ms, the Winslow et al. model was solved
on the interval [0,300] ms, and the Puglisi–Bers model
was solved on the interval [0,330] ms.

All the numerical experiments were performed on an
Athlon 64 3000+ 1.8 GHz processor with 1 GB RAM.
CPU times reported are the minimum of 5 runs. We
note that the runs for FE, ERK4, RL, DP, ARK3, and
ARK5 were performed within theodeToJava frame-
work. The runs for BE were performed usingode15s

within Matlab with MaxOrder set to 1 andBDF to
’On’. In this case a conversion factor was determined
to compare CPU time within Matlab to CPU time within
odeToJava. This was done by computing the average
of the ratios of a number of runs ofode45 with the
DP class withinodeToJava for different tolerances.
Similarly, the SDIRK4 and RADAU5 methods were run
using their respective Fortran codes, and a conversion
factor for CPU times was calculated by comparing
runs of DOPRI5.f [33, p. 477] with the DP class in
odeToJava. All CPU times reported below for BE,
SDIRK4, and RADAU5 reflect this conversion.

A. Customized Linear System Solver

With the splitting employed, a linear system involving
J(t,y) must be solved at each time step of an IMEX-RK
integration. Accordingly, we are interested in thesparsity
pattern of J(t,y) across the entire solution interval of
an ODE. A sparsity pattern can be thought of as a map
of a matrix describing which entries of a matrix are
always zero and which entries can be non-zero. The
sparsity patterns ofJ(t,y) for each of the 4 models
were generated; see Figure 2 for the sparsity pattern of
the Luo–Rudy model. If an element ofJ(t,y) is always
zero, it may be possible to omit it during Gaussian
Elimination [34], the method used for solving linear
systems by our implicit solver. This means that we may
further optimize the IMEX-RK results compared to the
previous section by customizing a Gaussian Elimination
code to take advantage of these sparsity patterns. Results
of the ARK3 and ARK5 methods with customized
Gaussian Elimination routine are included below. In
general not only do we see that such a customization
results in a performance improvement for each of the
4 models over a wide range of tolerances, but we also
see that the customization results in a variable step-size
implementation of either ARK3 or ARK5 being the most
efficient numerical method for every model.

B. Constant Step-Size Tests

In Table II, we report the maximum step-size,∆tmax,
to 3 significant figures, for which FE, ERK4, and RL
produce an approximation with less than5% RRMS
error. We also report the corresponding CPU times
required, the RRMS error, and the global error.

For FE and ERK4,∆tmax is also the step-size that
produces a stable solution, indicating that these methods
generally view the problems as stiff. Thus the resulting
RRMS errors can be well below the desired levels. We
also see that FE takes approximately 2–3 times less CPU
time than ERK4 on all 4 models studied. Hence, as



7

TABLE II

RESULTS FOR THEFE, ERK4,AND RL METHODS.

∆tmax CPU Time RRMS Error Global Error
L FE 1.34E–2 2.24E–1 3.08E–2 2.81E+0
R ERK4 1.86E–2 6.77E–1 3.87E–2 3.51E+0

RL 2.50E–1 4.29E–2 4.79E–2 5.39E+0
C FE 1.94E–2 8.05E–1 2.30E–3 1.94E+0
R ERK4 2.68E–2 2.30E+0 4.73E–2 6.73E+0
T RL 3.45E–1 7.89E–2 4.97E–2 3.75E+1
W FE 1.07E–4 4.04E+1 7.78E–8 9.91E–2
I ERK4 1.30E–4 1.31E+2 3.40E–2 2.61E–1
N RL 2.80E–4 2.25E+1 4.86E–2 6.08E+0
P FE 1.08E–2 4.54E–1 5.20E–3 3.54E–1
B ERK4 1.48E–2 1.08E+0 1.30E–2 1.33E–1

RL 4.30E–1 6.50E–2 4.83E–2 8.54E+0
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nz = 24

Fig. 2. Sparsity pattern for the Jacobian of the Luo–Rudy model.

is well known, higher order does not lead to greater
efficiency when non-stiff methods are applied to stiff
problems with moderate accuracy requirements.

We note that care must be exercised when determining
∆tmax for the RL method because the RRMS error
produced is not a monotonically increasing function of
the step-size. In other words, there exist∆t < ∆tmax

for which the RRMS errorexceeds5%. We also see that
RL always takes less CPU time than FE, ranging from
approximately 2 times less on the Winslow et al. model
to approximately 5–10 times less on the other 3 models.

C. Variable Step-Size Tests

Tables III–VI respectively report the results from DP,
BE, SDIRK4, RADAU5, ARK3, and ARK5 with vari-

able step-sizes applied to each of the 4 cardiac electro-
physiological models. We run the models using standard
error estimation and step-size control algorithms (see,
e.g., [28]) for a range of absolute and relative tolerances.
We set absolute tolerances equal to relative tolerances
and define TOL to be their logarithm to base 10; e.g.,
TOL= −3 implies both absolute and relative tolerances
were set to10−3. Integer values of TOL were run from
−1 to −6 for all solvers and all 4 models, but details
are reported for only the runs with the best CPU time
that met the 5% RRMS error criterion.

For the Luo–Rudy (LR) model, ARK3 and ARK5
produce acceptable solutions in the least amount of CPU
time. These methods are able to outperform the other
methods in the study even without taking sparsity into
account. In this case ARK3 with sparsity is the most
efficient method. It is also over60% faster than RL, its
next closest commonly used competitor.

For the Courtemanche et al. (CRT) model, ARK3
produces an acceptable solution in the least amount of
CPU time. With sparsity, ARK3 is over 40% faster than
RL, its next closest commonly used competitor.

For the Winslow et al. (WIN) model, ARK3 again
produces an acceptable solution in the least amount of
CPU time. With sparsity, ARK3 is over 25% faster than
SDIRK4, its next closest commonly used competitor.

Finally, for the Puglisi–Bers (PB) model, we see
that ARK3 and ARK5 produce acceptable solutions in
the least amount of CPU time, with or without taking
sparsity into account. In this case ARK5 with sparsity
produces an acceptable result almost 10 times faster than
RL, its next closest commonly used competitor.
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TABLE III

RESULTS FOR THELUO–RUDY MODEL .

TOL CPU Time Sparse CPU RRMS Global Average Max Min
(s) Time Error Error ∆t ∆t ∆t

DP –2 5.20E–1 – 1.85E–2 2.41E+0 9.26E–2 4.99E–1 7.80E–3
BE –3 1.45E–1 – 1.61E–2 2.92E+0 1.08E+0 5.89E+0 1.85E–3

SDIRK4 –1 4.80E–2 – 1.77E–2 2.05E+0 1.25E+1 6.78E+1 1.00E–3
RADAU5 –1 7.30E–2 – 6.75E–4 1.78E–2 1.25E+1 9.58E+1 1.00E–3

ARK3 –2 4.00E–2 1.80E–2 5.33E–3 1.91E+0 7.25E+0 6.42E+1 1.00E–3
ARK5 –2 3.40E–2 2.40E–2 7.46E–4 2.42E+0 1.15E+1 4.85E+1 6.36E–3

TABLE IV

RESULTS FOR THECOURTEMANCHE ET AL. MODEL.

TOL CPU Time Sparse CPU RRMS Global Average Max Min
(s) Time Error Error ∆t ∆t ∆t

DP –3 6.37E–1 – 5.26E–4 2.71E–1 1.66E–1 4.98E–1 2.84E–3
BE –2 8.26E–2 – 2.40E–2 1.21E+1 2.34E+0 1.77E+1 2.82E–3

SDIRK4 –2 1.28E–1 – 7.51E–4 1.91E–1 9.43E+0 7.91E+1 1.00E–3
RADAU5 –1 2.40E–1 – 2.61E–3 2.79E+0 1.04E+1 5.00E+1 1.00E–3

ARK3 –2 6.90E–2 4.50E–2 7.87E–3 1.06E+0 7.14E+0 3.32E+1 1.00E–3
ARK5 –2 1.37E–1 6.00E–2 3.60E–2 2.28E+1 1.19E+1 5.43E+1 1.00E–3

TABLE V

RESULTS FOR THEWINSLOW ET AL. MODEL.

TOL CPU Time Sparse CPU RRMS Global Average Max Min
(s) Time Error Error ∆t ∆t ∆t

DP –3 3.00E+1 – 7.92E–3 4.15E–1 4.88E–3 6.08E-1 1.57E–4
BE –4 9.51E–1 – 3.71E–2 1.25E+1 1.32E–1 5.38E+0 8.58E–5

SDIRK4 –2 2.72E–1 – 5.03E–3 5.81E–1 3.75E+0 4.79E+1 1.00E–3
RADAU5 –3 6.13E–1 – 7.68E–3 9.84E–1 2.65E+0 2.70E+1 1.00E–3

ARK3 –3 2.68E–1 1.97E–1 1.46E–2 1.84E+0 1.69E+0 3.45E+1 1.00E–3
ARK5 –3 4.65E–1 2.92E–1 3.15E–2 3.96E+0 3.06E+0 3.45E+1 1.00E-4

TABLE VI

RESULTS FOR THEPUGLISI–BERS MODEL.

TOL CPU Time Sparse CPU RRMS Global Average Max Min
(s) Time Error Error ∆t ∆t ∆t

DP –2 1.53E+0 – 4.43E–2 1.30E+0 4.09E–2 4.94E–1 4.71E–3
BE –3 1.74E–1 – 5.69E–3 7.62E+0 6.13E–1 1.01E+1 1.76E–1

SDIRK4 –3 1.36E–1 – 8.48E–3 5.85E+0 4.92E+0 4.45E+1 1.00E–3
RADAU5 –2 1.53E–1 – 4.77E–2 5.53E+1 6.34E+0 7.18E+1 1.00E–3

ARK3 –4 6.90E–2 4.60E–2 2.38E–3 5.04E–1 4.12E+0 5.50E+1 1.00E–3
ARK5 –3 1.12E–2 7.00E–3 1.89E–2 1.63E+1 1.48E+0 7.20E+1 1.00E–4
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D. Constant Step-Size IMEX

We also investigated the use of constant step-size
ARK3 and ARK5 methods. We find that these constant
step-size implementations significantly underperform the
corresponding variable step-size implementations. They
also significantly underperform the RL method on all of
the models studied. We omit further details.

V. CONCLUSIONS

In this paper we compared the performance of several
numerical methods for approximating solutions to ODEs
found in 4 popular mathematical models of cardiac
electrical activity. In particular, we compared the perfor-
mance 2 IMEX-RK methods (ARK3 and ARK5) to other
commonly used numerical methods for these models,
i.e., FE, ERK4, RL, DP, SDIRK4, and RADAU5.

For constant step-sizes, the RL method is the most
efficient for all the models studied here. It ranges from
being approximately 2 times faster than the FE method
for the Winslow et al. model to approximately 5–10
times faster than FE for the other models.

For variable step-sizes, the ARK methods outper-
formed the Dormand–Prince method for all 4 models. We
obtained qualitatively similar results from a comparison
of the ARK methods with the Bogacki–Shampine 3(2)
method, which is the underlying method behind Matlab’s
ode23 routine; we do not comment on this further.

Overall, a variable step-size implementation of ARK3
or ARK5 with a customized linear system solver was the
most efficient numerical method for all 4 mathematical
models of cardiac electrical activity considered here.
The results in this paper indicate that it is generally
advisable to use a numerical method with an inexpensive
implicit component and implemented with variable step-
sizes and specialized techniques that take advantage of
specific problem structure. When variable step-sizes are
not possible, the RL method is the most efficient method.

It may be possible to further increase the efficiency ad-
vantage of IMEX-RK methods over the methods studied
here by modifying the definitions offE andfI in (5) from
the default definitions inodeToJava or by constructing
new IMEX-RK methods.

In this paper we have only considered ODE models
of one cell. Further investigations of models involving
large numbers of cells coupled with PDEs in two or
three dimensions are necessary to fully establish the
potential of the results presented here. In particular,
linearly implicit IMEX operator-splitting methods that
do not use constant step-sizes may lead to substantial
performance gains. We report elsewhere on research
efforts in these directions.
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