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Abstract— Mathematical models of electric activity in models are often based on the Nobel prize-winning work
cardiac tissue are becoming increasingly powerful tools of Hodgkin and Huxley [2] in the 1950s that modelled
in the study of cardiac arrhythmias. Considered here neyral tissue mathematically as a circuit. Modern cardiac
are m_athematical models ba_sed on _ordinary differential electrophysiological models adapt the work of Hodgkin
equations (ODEs) that describe the ionic currents at the .4 1y, ey to describe electrical activity in the heart and

myocardial cell level. Generating an efficient numerical . .
solution of these ODEs is a challenging task, and in include data gathered from experiments to form models

fact the physiological accuracy of tissue-scale models iswith inc_reasing_ phySiOIOQi(_:al accuracy.
often limited by the efficiency of the numerical soluton A mMajor barrier to obtaining the most useful data from

process. In this paper, we examine the efficiency of the tissue-scale electrophysiological models of the heart is
numerical solution of 4 cardiac electrophysiological modis  the challenge of performing the simulations efficiently.
using implicit-explicit Runge—Kutta (IMEX-RK) splitting  Often the physiological accuracy of the mathematical
methods. We find that variable step-size implementations model must be sacrificed for a simulation to become
of IMEX-RK methods (ARK3 and ARKS) that take feasible; see, e.g., [3]’ [4]’ [5], [6] The ODE SyStemS
advantage of Jacobian structure clearly outperform the o 0ijhing the cellular dynamics in these models are
methods commonly used in practice. . i
non-linear and stiff (see, e.g., [7]). The consequence
Keywords: splitting methods; efficient numericalof stiffness is that the speed of the solution process is
methods; implicit-explicit Runge-Kutta methods; simiimited by considerations of numerical stability instead
ulation of electrophysiological models; Rush-Larsesf accuracy. Hence the solution process can potentially
method; ordinary differential equations. be made more efficient through the use of appropriate
numerical algorithms.
In this paper, we investigate the efficiency of implicit-
Computer simulation is becoming an important to@xplicit Runge—Kutta (IMEX-RK) splitting methods
in cardiovascular research. Mathematical models of thgee, e.g., [8]) for the simulation of 4 cardiac electrophys
heart can be used to simulate heart conditions and {BRgical models. Cardiac electrophysiological models
effects of certain drugs designed to treat them. Presenfigntain linear and non-linear terms as well as stiff and
the development of a drug often costs hundreds ghn-stiff terms, so IMEX methods are a natural choice
millions of dollars [1]. One aim of computer simulatiorfor their numerical solution. An IMEX-RK method uses
is to reduce this cost, e.g., by reducing the number ghth an implicit RK (IRK) method and an explicit RK
physical experiments needed in designing a drug.  (ERK) method to approximate the solution to an ODE.
Electrophysiological models of the heart describe The use of splitting methods for cardiac simulations
how electricity flows through the heart, controlling itss quite common, particularly for simulations in which
contraction. In this paper, we consider 4 mathematigile ODEs for myocardial cell models are coupled with
models for the flow of ionic currents at the myocardigdartial differential equations (PDEs) describing the flow
cell level. The models consist of SyStemS of Ordinary d|6‘f e|ectricity through myocardial tissue. For examp|e,
ferential equations (ODEs). Cardiac electrophysioldgicg second-order accurate operator splitting method for
Corresponding author. the monodomain model of myocardiac tissue is studied
R.J. Spiteri is with Department of Computer Science, Usitgof  iN [9]. The coupled non-linear PDE model is split into
Saskatchewan, Saskatoon, Saskatchewan, S7TN 5A9, Camadi (e an uncoupled linear parabolic PDE and a system of non-
Z‘;Le;fff‘;sr;ﬁsﬁf'é)fcaé This work was partially supportedNBERC |inaar ODEs. The PDE is then solved with either the
R.C Dean is with the Department of Computer Science, Uriyers forward Euler method or an alternating direction implicit
of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A9, Canada method, and the ODE system is solved with the Rush—

. INTRODUCTION



Larsen method [10]; see also below. This splitting isf the numerical experiments. We find that a variable
also used with first- and second-order IMEX schemes $tep-size implementation of an IMEX-RK method with
[11] for both the monodomain and bidomain models. Aa customized linear system solver clearly outperforms all
implicit method is used for the PDE(s), and an explicthe commonly used numerical methods of which we are
method is used to integrate the ODEs. The use of botlaware. Finally in Section V we give some conclusions
second-order Crank—Nicolson method and a first-ordend directions for future research.
semi-implicit method to solve the bidomain model is
investigated in [12]. These methods were optimized by
splitting the non-linear cell model into two components,
one with positive eigenvalues and another with negativeBecause of their intricacy, obtaining physiologically
eigenvalues. This work is extended in [13], where the celtcurate mathematical models is a difficult task. A
model is split from the PDEs and solved with the backurther challenge to obtaining physiological accuracy is
ward Euler method and further optimized by deriving athat of performing the simulation efficiently. To move
explicit scheme to solve the ODEs. The work in [12] igffectively beyond models for one cell, enough cells must
extended in [14] to create a first-order method to simulage included in the model to realistically approximate
the flow of electricity in the heart and the surroundinghe geometry and physiology of the heart. Because the
torso. In [15] the ODEs are separated as in [9], and thagart has approximately0'® cells [23], any realistic
the approach from [14] is used to solve the PDEs #imulation will have enough cells (or clusters of cells) to
the heart and torso, resulting in a second-order methegamatically magnify any inefficiencies in the numerical
The work of [12] is also extended in [16] to includemethod. This has forced some researchers to reduce
additional complexities such as rotational anisotropyie physiological accuracy of their models to allow the
and blood layer boundary conditions. Other numericgimulation to be performed within an acceptable amount
methods used to solve the ODEs in such models incluge time; see e.g., [3], [4], [5], [6]. The models are
singly diagonally implicit RK (SDIRK) methods, fully numerically stiff, and so standard (explicit) numerical
implicit RK methods, and multi-step methods based anethods are often unable to provide efficient simulations.
backward differentiation formulas (BDFs); see belouf the efficiency of the simulation process can be signifi-
and also, e.g., [17]. cantly improved, then greater physiological accuracy and
In this paper, we consider 4 mathematical modedsibsequently more useful data can be obtained.
of cardiac electrophysiology: the Luo—Rudy model of
guinea pig ventricular tissue [18], the Courtemanche
et al. model of human atrial tissue [19], the Winslow. The Luo—Rudy model of guinea pig ventricular tissue

et al. model of canine ventricular tissue [20], and the |4 1991 Luo and Rudy developed a model of guinea
Puglisi-Bers model of rabbit ventricular tissue [21]. Wgjg ventricular action potentials based on a previous
perform a thorough comparison of the performance g{odel from Beeler and Reuter [24]. The Luo—Rudy
two specific IMEX-RK methods, denoted here as ARKggde| [18] extended the Beeler—Reuter model to include
and ARKS [22], respectively, to numerical methodgst inward sodium and outward potassium currents to
commonly used in practice for simulating these 4 moghake the model more physiologically accurate. The
els. We also consider problem-specific optimizations fneral approach of these models is based on Hodgkin—
the IMEX-RK methods described. The results presentg@,ﬂey type formalism [2]; the Luo—Rudy model itself
have the obvious limitation that they are based on singlésnsists of 8 nonlinear ODEs.

cell models, and thus further studies are necessary tq-o; 4 individual cardiac cell we have that the trans-
fully establish their applicability to tissue-scale si@ul embrane potentidl;, satisfies [18]:
tions. However, the present work can provide guidance

[I. ELECTRICAL ACTIVITY OF THE HEART

for development of efficient splitting methods for the AVim = _L([m + Iy), 1)
simulation of PDE models that use variable step-size dt Cm
ODE solvers for the cellular dynamics. whereC,, is the membrane capacitandg,, is the total

The rest of this paper is organized as follows. Itransmembrane ionic current, ang, is the stimulus
Section Il we give a brief introduction to mathematicaturrent. An example of the evolution df,, over time
models of electrical activity in the heart. In Section Il wdor this model is given in Figure 1.
give a brief overview of the numerical methods used in The Luo—Rudy model contains 6 ionic currents that
this paper for the numerical solution of the ODEs arisingre determined by 6 gating variables [18]. The evolution
from these models. In Section IV we discuss the resutt§each gating variablg is governed by a nonlinear ODE



C. The Winslow et al. model of canine ventricular tissue

In 1999 Winslow, Rice, Jafri, Marban, and O’Rourke
developed a model of canine ventricular tissue [20]. This
model is based on a guinea pig model that was an
extension of the Luo—Rudy Phase Il model. The Winslow
et al. model was developed using experimental data to
modify the guinea pig model so that it would simulate
canine ventricular tissue. The Winslow et al. model
Tme () is particularly detailed when describing the dynamics
of Ca*t, which is an important consideration in heart

Fig. 1. Transmembrane potential over time in the Luo—Ruddeho fgilure. It consists of 32 ODEs making it the most
This is a numerical solution produced by ARKS5 for equation (1 ’

coupled with 7 other ODES [18] via thk.,, current as produced by complex of the mode_ls in this study. Full details of the
ARKG5. model can be found in [20].

Transmembrane Potential (mV)

D. The Puglisi-Bers model of rabbit ventricular tissue

involving rate parameters, andgj, in the general form o _
In 2001 Puglisi and Bers developed a model of rabbit

dy _ Yoo T 97 ) ventricular tissue [21]. Although rabbit ventricular tigs
dt Ty is used frequently in experiment, no mathematical model
where had been previously developed for it. This model was
a, 1 adapted from the Luo—Rudy model to include data from
Yoo = e and 7, = a + 8, the literature and from the joint laboratory of Puglisi and
Y Y Y Y

o _ _ Bers. This model was designed to be a learning aid for
The remaining ODE in the Luo—Rudy model describeg,gents as well as a tool for researchers to reproduce
calcium concentration in the cell: experimental data via computer simulation. Thus, phys-
d([Cdi) _ 1017, +0.07(10~% — [Cady), (3) lolodical accuracy was of paramount importance. The
dt Puglisi-Bers model gives particular detail to calcium
where[C4d; is the intracellular calcium concentration an#tandling in order to accurately simulate heart failure.
I; is the slow inward calcium current [18]. The 6 gatind his model contains 17 ODEs. It is also referred to as
equations of the form (2) are coupled with (1) and (3he LabHeart[21] model. Full details of the model can
to form the complete Luo—Rudy model. Full details ope found in [21].
the model can be found in [18].
In 1994 Luo and Rudy published an improvement I1l. NUMERICAL METHODS
to this model, now known as the Luo—-Rudy Phase Il |5 this paper we focus on the solution of thgtial-
model [25], [26]. This model includes the actions ofzue problem(IVP) for ODEs, defined as
ionic pumps and changes in ionic concentrations. It is p
a more physiologically accurate yet more complicated @ _ f(t,y), y(0)=yo, 4)
model than (1)—(3), consisting of 14 ODEs. We do not dt
consider the Luo—Rudy Phase Il model in this study. on the intervat € [0, ¢;]. We now describe the numerical
methods compared here. We also describe aspects of
creating an efficient numerical simulation. Except for the
B. The Courtemanche et al. model of atrial tissue  fyly implicit methods studied, all numerical experiments
In 1998 Courtemanche, Ramirez, and Nattel developeegre run usingdeToJava [27], a Java-based problem-
a model of human atrial action potentials [19]. It wasolving environment for IVPs Details on how the fully
developed in response to findings that show there amplicit methods were run are given below.
important differences in human action potentials when
compared to those of other mammals frequently us@d The Forward Euler Method
in models. Courtemanche et al. developed this model : . .
with human data supplemented with animal data WhenA_rguany the _S|mplest n_umerl,cal method for approxi-
. Mmating the solution of (4) i€uler’s methogdor Forward
needed. The Courtemanche et al. model is an extension
of the Luo—Rudy Phase Il model. It consists of 21 ODES.1presentlyodeToJava supports only ERK and linearly implicit
Full details of the model can be found in [19]. IMEX-RK methods.



Euler (FE). One step of FE frorft,,—1,y,—1) to (t,,y.») order ERK method, and which we denote by ERK4:
is given by

Yn =¥Yn-1+ Atpf (tn—la Yn—l) 5
tn =th—1+ Atrn

= o= O
olH O Owi— O
wH o~ O O
wWHR O OO
S+ o0 oo

wherey, =~ y(t,). The time stepAt,, := t, — t,—1 ‘

need not be constant for each It is well known that Another popular ERK method is the Dormand—Prince

FE is flrsf[-c_erer _accurat_e [28], which is generally t0$§4) (DP) pair, which is of order 5 and is coupled with
low for efficiency in practice. Nonetheless, because of i L :
a, method of order 4 for error estimation and step-size

simplicity, it is often used to simulate IVPs (4) associated . . .
WithIO mo)élels of cardiac activity, and heElc)e it serv control [28]. This method is the basis of the popular

e :
as a useful benchmark against which to measure ott@e"’rltlab routineode4s.

numerical methods. o
C. Fully Implicit Methods

We include 3 fully implicit methods in our study. The
first is arguably the simplest fully implicit method, the
backward Euler(BE) method, a one-stage, first-order
implicit RK (IRK) method with Butcher tableau

B. Explicit Runge—Kutta Methods 111
1

The FE method can be viewed as the simplest of atha second is the SDIRK method SDIRK4 of [29,
more general class of numerical methods for soIvirlg 107]. This is a 5-stagd,-stable method of order 4
IVPs known asexplicit Runge—KuttaERK) methods; | i an embedded method of order 3.
see, e.g., [7]. ERK methods aim to improve on the the thirg method is the 3-stage Radau IIA method
FE method by increasing the accuracy of the numerigahpaus of [29, p. 78]. Itis a fully implicit RK method
solution by means of additionéllevaluations (ostage$ ¢ qrder 5 and has the property siiff decay[29].
within a given time step. A generatstage RK method  \ne note that we only consider IRK and not BDF
has the form methods in the present study. In the context of splitting

5 methods for mono- or bidomain models, the ODEs and
Yn = Yn-1 + Aty Z biki, PDEs are only advanced over small intervals in time be-
=1 fore updated solution information is exchanged between
where fori =1,2,... s, systems. Results from [17] indicate that BDF methods
s were not competitive with IRK methods in terms of
ki =f | tn1+ Ay, yno1 + Atnzaijkj 7 CPU_ time in such situations._ Moreover, BDF method;
require storage of the solution from past steps. This
makes them less attractive than RK methods because this
extra storage requirement may consequently reduce the
c| A overall resolution available for the simulation.
b

A Runge—Kutta method iexplicit if A is strictly lower D. Implicit-Explicit Methods

triangular; otherwise it ismplicit. With ERK methods, = When the right-hand side of an ODE can be written
the stages can be computed successively and their cortgi-the sum of two terms

butions combined to produce a high-order approximation dy

at the end of the step. With IRK methods, a (generally) i (t,y) +fe(ty), ()

n_onllnear system of eql_Jatlons must be solved at €V&lYs often natural to consider approximating the contri-

time step for a_II stages _S|multanequsly. However, becayggi offz(¢,y) andf; (¢, y) using different numerical

of thelr_ superlor_stab|l|ty properties, IRK methods Alfhethods. Such methods are knownaaslitive methods.

well-suited for stiff problems [7]. In general, when the right-hand side of an ODE can be
Perhaps the most popular high-order ERK method vwgitten as the sum of terms, these methods are called

the classical RK method, which is a four-stage, fourtm-additive methods. When the constituent numerical

j=1

and can be summarized via tBaitcher tableay7]:



methods are RK methods, then they are knowmnas solution to the gating equations (2) using
additive RK methods. Furthermore,dfy/dt = fr(t,y) _ Aty
is such that it is best approximated with an explicit Yn =Yoo + (Yn—1 — Yc)e 7,

method anddy/dt = fi(t,y) is such that it is best yhjch represents the exact solution of @suming all
approximated with an implicit method, we may use afriaples besides are constant FE is then used to
IMEX method in an attempt to approximate the solutioggyance the solution of the remaining equations. Using
to this ODE efficiently [8]. An example of when anihis method the Luo—Rudy model, for example, is no
IMEX method would be useful is whefii:(¢,y) consists |gnger stiff [31]; i.e., the time step-size can be chosen
of non-stiff and/or nonlinear terms arfi(¢,y) consists pased on accuracy considerations. However, this method

of stiff and/or linear terms. Again, when the constitueng only first-order accurate and thus suffers from the
implicit and explicit methods are RK methods, we havgs,al drawbacks of low-order methods.

an IMEX-RK method.
For example [30], the combination of the FE and B
methods gives the IMEX-RK method:

IE—. Accuracy and Stability

An IVP is often calledstiff if the choice of step-size
Yn = Yn—1+ Aty (FE (yn—1) + 1 (yn)) - At,, of a numerical method is determined by stability

More generally ans-stage IRK method with coeffi- requirements rather _than by accuracy _requirerﬁent_s
cients A, ¢, b is combined with an(s + 1)-stage ERK Generally, the step-size requweq for a stlff problem is
method with coefficientd, b, &. As is conventional, we much smaller than accuracy requirements dictate. In such
assume that = (0, ¢)7, and the IRK method is taken€@ses, the numerical solution is typically much more

to be an SDIRK method [30], [22]. An SDIRK methodccurate than required by the user.
has a lower triangulaA with all diagonal elementa;; When a numerical method is able to produce a stable

non-zero and equal. This form @ creates efficiencies @PProximation, we are then interested in the accuracy

in the solution to the nonlinear equations for the stag8b e approximation. When the exact solution is not
at each step, i.e., allowing each stage to be solved {3I°Wn, we may be able to generateederence solution

sequentially with the same Newton iteration matrix. PY USing a variable step-size solver with low error
tolerances until two approximations are produced that

In this study, we consider the IMEX-RK meth- ; desired b f significant diaits. In thi
ods ARK3(2)4L[2]SA and ARK5(3)8L[2]SA from [22], 29"€€ 0 a desired number of significant digits. n this
tudy, we generate a reference solution by using a high-

which we denote by ARK3 and ARKS5, respectively. . T .
rder, variable step-size implicit solver and lowering the

ARKS3 is an IMEX-RK method having 4 stages an ) . ;
Srror tolerances for successive approximations until two

estimation and automatic step-size control; ARK5 has proximations are identical for at least 10 significant
' Lgits at N equally spaced output points = ity/N,

stages, order 5, and an embedded method of order .
ges, ’ ;=1,2,..., N, with N = 100. We can then measure the

The Butcher tableaux of ARK3 and ARKS5 are listed ifi — i mati lative to th f
Appendix C of [22]. error in the approximatiory, relative to the reference so-

. . lution, y. A popular way to quantify error in the literature
_We split the ODE (4) on eqch tlme Stéfh 1, ) on heart simulation is th&elative Root Mean Squared
with the (default) dynamic splitting irodeToJava, (RRMS) errorof the transmembrane potential [32]:
namely f;(t,y) = J(tn-1,yn-1)y(t) andfp(t,y) :=

f(t,y) — J(tn_1,¥n-1)y(t), whereJ := 0f/dy. We NG VAR YAV
n(ote ?[hat tﬁlis splitting) is( iuch that only the/linear term RRMS := \/ZZ:ZIS\Y—ZVQVZ)
is treated implicitly, and hence there is no need for a =17
Newton iteration when solving the implicit equationswhereV; is the numerical approximation arid is the
This makes the method similar ®osenbrock methods reference solution at timg as described above. Given
see, e.g., [8], which are also linearly implicit methodthe many approximations made in creating the model, an
but for ODEs (4) that are not split. RRMS error of5% is generally considered acceptable.
As a more familiar measure of error, we also quantify
error via theglobal error, which we define as

Y

E. The Rush-Larsen Method N ]
€global -:= max|V; = Vj|, i=1,2,...,N.

An alternative to using classical methods such as FE
that is popular in the cardiac simulation literature is thezaguaply, there is no universally accepted definition of & st
Rush-Larse(RL) method. The RL method advances thgroblem, but this description of stiffness suffices for owrdy.



IV. RESULTS within Matlab with MaxOr der set to 1 andBDF to
Using odeToJava we performed numerical’ On’ . In this case a conversion factor was determined

experiments with the FE, ERK4, RL, DP, BE, SDIRK4t,° compare CPU time within Matlab to CPU time within

RADAU5. ARK3, and ARK5 methods and compare&’deTOJ ava. This was done by computing thg average
their performance. Except fo¥,,, the initial values of ©f the ratios of a number of runs aide45 with the

the variables were taken to be those that correspolaﬁ _class withinodeToJava for different tolerances.
to the heart in its resting state. For the Luo—Rud?'m'la”yv the SDIRK4 and RADAUS methods were run

and Winslow et al. models, the initial values ®f, USng their respective Fortran codes, and a conversion

were chosen to produce the effect of an explicdictor for CPU times was calculated by comparing
stimulus current. That is, the initial values used fdins 0f DOPRIS. T [33, p. 477] with the DP class in
V,, are above the thresholds for the cells to fire. FGde€ToJava. All CPU times reported below for BE,
the Courtemanche et al. and Puglisi-Bers modefRPIRK4, and RADAUS reflect this conversion.

the initial values forV,, were taken as their resting

values, and an explicit stimulus was applied as givéh Customized Linear System Solver

by (1). In particular, for the Courtemanche et al. model, with the splitting employed, a linear system involving
I = —2000 pA/pF from¢ = 0 to ¢ = 2ms and 0 J(¢,y) must be solved at each time step of an IMEX-RK
elsewhere; for the Puglisi-Bers model,, = —10 integration. Accordingly, we are interested in #arsity
pAlpF from¢ = 1to ¢ =5 ms and O elsewhere. Thepattern of J(¢,y) across the entire solution interval of
SpeCiﬁC initial values used foV/,,, are listed in Table an ODE. A Sparsity pattern can be thought of as a map
|. See [18], [19], [20], [21] for complete listings ofof a matrix describing which entries of a matrix are
the remaining initial values. These values may also B@vays zero and which entries can be non-zero. The
accessed ahttp://ww. cel I m .org/model s/ gparsity patterns ofi(¢,y) for each of the 4 models
under the directoried uo.rudy_1991.versi on04, were generated; see Figure 2 for the sparsity pattern of
courtemanche_ram rez_nattel -1998_ver si on02, the Luo_Rudy model. If an element d(t7y) is a|WayS

wi nslowricejafri._marban.ororke.1999.version0l,  zerg, it may be possible to omit it during Gaussian
andpugl i si .bers_2001_ver si on01, respectively. Elimination [34], the method used for solving linear
systems by our implicit solver. This means that we may

INITIAL VALJEASBIF'ERIV S furth_er optimi_ze the IMEX-RI_( results cor_npare_d t_o the

e previous section by customizing a Gaussian Elimination
code to take advantage of these sparsity patterns. Results

Model Viest of the ARK3 and ARKS5 methods with customized
Luo—Rudy —35.0 Gaussian Elimination routine are included below. In
Courtemanche et al. —81.2 general not only do we see that such a customization
Winslow et al. ~35.0 results in a performance improvement for each of the
Puglisi-Bers _855 4 models over a wide range of tolerances, but we also

see that the customization results in a variable step-size
. . implementation of either ARK3 or ARK5 being the most
The models were solved over time intervals repre-,. . .

: : . : . efficient numerical method for every model.
senting one cardiac cycle. Different time intervals wereé
used due to specific physiological properties of the mam- _
malian heart that each model represents. According®, Constant Step-Size Tests
the Luo—Rudy model was solved on the interval [0,450] In Table Il, we report the maximum step-siz&¢max,
ms, the Courtemanche et al. model was solved on ttee3 significant figures, for which FE, ERK4, and RL
interval [0,500] ms, the Winslow et al. model was solveproduce an approximation with less thaft RRMS
on the interval [0,300] ms, and the Puglisi-Bers modefror. We also report the corresponding CPU times
was solved on the interval [0,330] ms. required, the RRMS error, and the global error.

All the numerical experiments were performed on an For FE and ERK4,Atnax iS also the step-size that
Athlon 64 3000+ 1.8 GHz processor with 1 GB RAMproduces a stable solution, indicating that these methods
CPU times reported are the minimum of 5 runs. Wgenerally view the problems as stiff. Thus the resulting
note that the runs for FE, ERK4, RL, DP, ARK3, andRRMS errors can be well below the desired levels. We
ARKS5 were performed within th@deToJava frame- also see that FE takes approximately 2—3 times less CPU

work. The runs for BE were performed usinglel5s time than ERK4 on all 4 models studied. Hence, as



TABLE I
RESULTS FOR THEFE, ERK4,AND RL METHODS.

Atmax CPU Time RRMS Error Global Error

L FE 1.34E-2 2.24E-1 3.08E-2 2.81E+0

R ERK4 186E-2 6.77E-1 3.87E-2 3.51E+0

RL 250E-1 4.29E-2 4.79E-2 5.39E+0

C FE  1.94E-2 8.05E-1 2.30E-3 1.94E+0

R ERK4 268E-2 2.30E+0 4.73E-2 6.73E+0

T RL  3.45E-1 7.89E-2 4.97E-2 3.75E+1

W FE 1.07E-4  4.04E+1 7.78E-8 9.91E-2

| ERK4 1.30E-4 1.31E+2 3.40E-2 2.61E-1

N RL 2.80E-4 2.25E+1 4.86E-2 6.08E+0

P FE 1.08E-2 4.54E-1 5.20E-3 3.54E-1

B ERK4 1.48E-2 1.08E+0 1.30E-2 1.33E-1

RL 430E-1 6.50E-2 4.83E-2 8.54E+0
o able step-sizes applied to each of the 4 cardiac electro-
physiological models. We run the models using standard
o ’ error estimation and step-size control algorithms (see,
2r . * ] e.g., [28]) for a range of absolute and relative tolerances.
3l . . | We set absolute tolerances equal to relative tolerances

and define TOL to be their logarithm to base 10; e.g.,
TOL= —3 implies both absolute and relative tolerances
were set tal0~3. Integer values of TOL were run from
6 ) o —1 to —6 for all solvers and all 4 models, but details
are reported for only the runs with the best CPU time
that met the 5% RRMS error criterion.

S For the Luo—Rudy (LR) model, ARK3 and ARKS5
et 2 3 4 & 6 7 8 9 produce acceptable solutions in the least amount of CPU
time. These methods are able to outperform the other
methods in the study even without taking sparsity into
account. In this case ARK3 with sparsity is the most
efficient method. It is also ovei0% faster than RL, its

is well known, higher order does not lead to greatéext closest commonly used competitor.

efficiency when non-stiff methods are applied to stiff For the Courtemanche et al. (CRT) model, ARK3

problems with moderate accuracy requirements. produces an acceptable solution in the least amount of
We note that care must be exercised when determinig®U time. With sparsity, ARK3 is over 40% faster than

Atmax for the RL method because the RRMS errarL, its next closest commonly used competitor.

produced is not a monotonically increasing function of For the Winslow et al. (WIN) model, ARK3 again

the step-size. In other words, there exist < Atmax L
for which the RRMS erroexceeds%. We also see thatproduces an acceptable solution in the least amount of
X CPU time. With sparsity, ARK3 is over 25% faster than

RL always takes less CPU time than FE, ranging fro . .
) . , gDIRK4, its next closest commonly used competitor.
approximately 2 times less on the Winslow et al. modé

to approximately 5-10 times less on the other 3 models.Finally, for the Puglisi-Bers (PB) model, we see
that ARK3 and ARK5 produce acceptable solutions in
] ] the least amount of CPU time, with or without taking
C. Variable Step-Size Tests sparsity into account. In this case ARK5 with sparsity
Tables IlI-VI respectively report the results from DRproduces an acceptable result almost 10 times faster than
BE, SDIRK4, RADAU5, ARK3, and ARK5 with vari- RL, its next closest commonly used competitor.

Fig. 2. Sparsity pattern for the Jacobian of the Luo—Rudy ehod



TABLE 11l
RESULTS FOR THELUO—RUDY MODEL.

TOL CPU Time Sparse CPU RRMS  Global Average Max Min
(s) Time Error Error At At At
DP -2 5.20E-1 - 1.85E-2 2.41E+0 9.26E-2 4.99E-1 7.80E-3
BE -3 1.45E-1 - 1.61E-2 2.92E+0 1.08E+0 5.89E+0 1.85E-3
SDIRK4 -1 4.80E-2 - 1.77E-2 2.05E+0 1.25E+1 6.78E+1 1.00E-3
RADAU5 -1 7.30E-2 6.75E-4 1.78E-2 1.25E+1 9.58E+1 1.00E-3

ARK3 -2 4.00E-2 1.80E-2 5.33E-3 1.91E+0
ARKS5 -2 3.40E-2 2.40E-2 7.46E-4 2.42E+0

7.25E+0 6.42E+10BE-G8
1.15E+1 4.85E+16E6-3

TABLE IV
RESULTS FOR THECOURTEMANCHE ET AL. MODEL.

TOL CPU Time Sparse CPU RRMS  Global Average Max Min
(s) Time Error Error At At At
DP -3 6.37E-1 - 5.26E-4 2.71E-1 1.66E-1 4.98E-1 2.84E-3
BE -2 8.26E-2 - 2.40E-2 1.21E+1 2.34E+0 1.77E+1 2.82E-3
SDIRK4 -2 1.28E-1 - 751E-4 191E-1 9.43E+0 7.91E+1 1.00E-3
RADAU5 -1 2.40E-1 2.61E-3 2.79E+0 1.04E+1 5.00E+1 1.00E-3

ARK3 -2 6.90E-2 4.50E-2 7.87E-3 1.06E+0

7.14E+0 3.32E+10E-G
ARKS5 -2 1.37E-1 6.00E-2 3.60E-2 2.28E+1 1.19E+1 5.43E+10E-8
TABLE V

RESULTS FOR THEWINSLOW ET AL. MODEL.

TOL CPU Time Sparse CPU RRMS  Global Average Max Min
(s) Time Error Error At At At
DP -3 3.00E+1 - 7.92E-3 4.15E-1 4.88E-3 6.08E-1 1.57E-4
BE -4 9.51E-1 - 3.71E-2 1.25E+1 1.32E-1 5.38E+0 8.58E-5
SDIRK4 -2 2.72E-1 — 5.03E-3 5.81E-1 3.75E+0 4.79E+1 1.00E-3

RADAUS -3 6.13E-1 - 7.68E-3 9.84E-1
ARK3 -3 2.68E-1 1.97E-1 1.46E-2 1.84E+0
ARKS5 -3 4.65E-1 2.92E-1 3.15E-2 3.96E+0

2.65E+0 2.70E+1 1.00E-3
1.69E+0 3.45E+10BE-G
3.06E+0 3.45E+1 OELD

TABLE VI
RESULTS FOR THEPUGLISI-BERS MODEL

TOL CPU Time Sparse CPU RRMS  Global Average Max Min
(s) Time Error Error At At At
DP -2 1.53E+0 - 4.43E-2 1.30E+0 4.09E-2 4.94E-1 4.71E-3
BE -3 1.74E-1 — 5.69E-3 7.62E+0 6.13E-1 1.01E+1 1.76E-1
SDIRK4 -3 1.36E-1 - 8.48E-3 5.85E+0 4.92E+0 4.45E+1 1.00E-3

RADAUS -2 1.53E-1 - 4. 77E-2 5.53E+1
ARK3 —4 6.90E-2 4.60E-2 2.38E-3 5.04E-1
ARKS5 -3 1.12E-2 7.00E-3 1.89E-2 1.63E+1

6.34E+0 7.18E+1 1.00E-3
412E+0 5.50E+10ELB
1.48E+0 7.20E+10E-2
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