A Whirlwind Tour of Matlab

John M. Stockie
stockie@unb.ca
Department of Mathematics and Statistics

University of New Brunswick
Fredericton, NB, Canada E3B 5A3

September 17, 2001

Version 1.1

Copyright ©2001 by John M. Stockie (University of New Brunswick). This document may be freely distributed provided
that it is not altered in any way and that credit is given to the author.



A Whirlwind Tour of Matlab Page 2/15

1 Introduction

This document is intended as a very brief introduction to the software package Matlab, for students
in the course CS 3113(Numerical Methods I). It contains only just enough to get you started on the
assignments, and so I would highly encourage you to explore Matlab’s capabilities on your own.

Many other Matlab tutorials, guides and manuals are available, but (IMHO) most tend to be long-
winded and intimidating for the student who requires a knowledge of only a small subset of the lan-
guage’s commands. My aim here is to give you the basics in 20 pages or less. For a more comprehensive
treatment, please refer to other books and tutorials ...a short list is included in the Bibliography. In
particular, you may find the online tutorials [2], [3] and [7] quite helpful.

Throughout this document, certain standard conventions are used. Matlab commands, which are in-
tended to be typed at the Matlab prompt, are displayed in a blu e computer font . Corresponding
output from Matlab is shown in a blac k computer font .

2 Matlab fundamentals

“Matlab” stands for “Matrix Laboratory.” It is an interactive software program for performing numerical
computations. Matlab was initially designed by Cleve Moler in the 1970s for use as a teaching tool, but
it has since become a very successful commercial package. One of Matlab’s best features, from the point
of view of the computational scientist, is its large built-in library of numerical routines and graphical
visualisation tools.

Running Matlab: To start Matlab, you simply type the command matlab at your prompt, or if you
are using Windows on the UNB Novell Network, then click on the “Matlab” icon. You will be presented
with a text window that contains the Matlab prompt:

>>

This is the signal that Matlab is waiting for you to type a command.

Directories and files: Matlab can only access files that are in its working path or in the “currect working
directory.” My suggestion is that you save all of your files in the directory f: \cs 3113 \matlab \.! Every
time you start up Matlab, it is a good idea to switch to this directory using the command:

>> cd 'f: \cs3113\malab \’

The single quotes are essential!

Note: when presented with Matlab commands in blue, you should type in the command not including
the prompt, “>>.”

After executing the above command, you are ensured that you will have access to all of the files in this
directory, and that all of your output and plot files will be saved to the same directory. Two other useful
commands are pwd, which prints the current working directory, and dir , which gives a listing of your
files.

An alternate (and more permanent) way to allow Matlab access to your files, particularly if they reside
in more than one directory, is to modify Matlab’s “search path,” which is a list of directories to search

'The drive and exact location of the course directory may differ depending on which machine or system you are working
on. If a directory doesn’t already exist, then create one for yourself.



A Whirlwind Tour of Matlab Page 3/15

for files. You can change the search path either using the path command or, if you are working on a
Windows machine, by selecting the Optio ns -> Change Path menu.

Getting help: The most useful command in Matlab is hel p. Use it liberally, and use it often. For
example, typing help plot will display documentation on the plotting command. You will often find
that the text window is not large enough to fit all of the output from a Matlab command. To allow you
to page through the information, one screen at a time, you can use more on, and then progress through
pages of output by hitting the space bar. Typing more off will return to the default behaviour of no
paging.

It’s often the case that you don’t know the exact name of a Matlab command, in which case you can
use look for to help you out. For example, typing look for log arit hmwill list all known Matlab
functions that have something to do with logarithms.

Saving your session: When working on assignments, it is very helpful to be able to save to a file all of
the input and output from your current Matlab session for later printing. The command diary is very
useful for this purpose. At the prompt, you simply type:

>> diary( 'diaryfilenane’ )

>> ... type your commands here ...

>> dia ry off

which will save all input and output between the dia ry commands to a file with the given name.

3 Basic computations

Arithmetic operations: Matlab’s arithmetic operations follow a syntax that is very similar to that in
other languages that you might be familiar with such as C, C++, Fortran, Java, etc. The assignment
operator is =, the basic arithmetic operators are +, -, *, /, and the exponentiation operator is ~ . Using
these basic operators, Matlab can be used as simple calculator:

> 10 - 13 +4* 2/ 5
ans =
-1. 4000
> 25 -1
ans =
31
Matlab returns the result of the most recent computation as ans = ... . The precedence of operators
is the usual (exponentiation, followed by multiplication/division, followed by addition/subraction),
evaluated from left to right. Other orders of operations can be enforced by using parentheses, ( and ) :

>> (10 - (13 +4 * 2) /| 5
ans =
-2. 2000

Variables: Variable names in Matlab are combinations of letters and digits, beginning with a letter. For
example, X, yFin al , and b25 are all valid variable names; 1zf irst , x%3, and y-to tal are invalid



A Whirlwind Tour of Matlab Page 4/15

names. Names are also case-sensitive, so that xyz is different from xYz. Consider the example:

>> x = 45
X =
4.5
Now, the value 45 is stored in the variable x, which can be used in subsequent calculations:
>y = X3 - 2x +1

y =
91. 6806

Notice the message generated when the undefined variable Y (i.e., uppercase y!) is referenced
>> Y2 - 3

??? Undefined fun ction or varia ble 'Y’

Combining commands and suppressing output: The comma (, ) and semi-colon (; ) are characters
that have very special meaning in Matlab, and will prove to be very useful.

e the comma operator is used to group multiple commands on the same line, for example:

>> x=3.5 y=5.0, X3 -y

X =

3.50 00
y =

-5
ans =

47.8 750

o the semi-colon operator is used to suppress output. If the previous example were slightly modified,
>> x=3.5; y=-5.0; X3 -y
ans =
47.8 750

then the results of the first two assignment statements are suppressed.

Pre-defined constants: Matlab defines several useful constants including pi (7 = 3.14159265...), i
and j (both equal to the imaginary unit, sqrt( -1) ), inf (infinity) and NaN(not-a-number). The result
of the previous command is always assigned to the value ans.

You should avoid re-assigning values to the above constants, if at all possible. The only exceptions
are, i and j , both of which are commonly used as loop indices: reassigning these values is acceptable
since the complex unit can always be obtained using sqrt (-1)

Built-in functions: Just as in many other high-level languages, Matlab implements more complex
arithmetic functions as procedures. These include the square root (sqrt ), exponentials (exp), vari-
ous logarithms (log , logl 0, log2 ), absolute values (abs ), and trigonometric functions (sin , cos, tan ,
atan , ...). For example,
>> sin (45)
ans =
0.8 509



A Whirlwind Tour of Matlab Page 5/15

T

returns the sine of 45 radians ... what you probably intended was to compute the sine of 45° = 45 x 180

radians:
>> sin (45/1 80*p i)
ans =
0.7 071

and then check that you get @ as expected:
>> sqrt(2)/ 2

ans =
0.7 071

Notice that all Matlab calculations introduce rounding error, which sometimes show up in unexpected
ways. For example, you shouldn’t be confused when you see
>> tan (pi)

ans =
-1. 2246e-16

... keeping in mind that rounding errors are ubiquitous, just interpret this result as tan 7 = 0.

Type help elfu n for a complete list of built-in functions.

Display formats: The default “format” for display of double precision numbers is using 5 significant
figures, as in the previous examples. If more precision is desired, you can use Matlab’s for mat com-
mand to alter the way output is displayed; in particular, form at long increases the accuracy with
which the results are displayed, and for mat short is the default. In the following example:
>> for mat short, exp( log( 10000) )
ans =
1.0 000e+ 04
which is the expected value, but it is only using long format:
>> for mat lon g, exp( log (100 00) )
ans =
1.0 00000 000000001 e+04
that round-off errors in the calculation become evident.

Typehelp form at to see a complete list of possible output formats.

Matlab data types: There are several different basic data types in Matlab:

e Integers, such as -5 or 93456 .

e Double precision reals: In Matlab, all real numbers are stored in double precision (unlike languages
like C or Fortran, which have a separate flo at or REA*8 type for single precision reals). An
extremely useful short form for entering very large or very small real numbers is the “e” notation:
-1. 23456 e-7 , which is short for —1.23456 x 10~7, and 9.23e +12 which stands for 9.23 x 10'2.



A Whirlwind Tour of Matlab Page 6/15

Some examples:

>> -1.2 3e-2
ans =
-0.0 123

>> 7e9
ans =
7.00 00e+09

o Complex numbers: which are entered as 3+2* i or 3+2* sqrt (-1) , for example.

e Strings: which are arrays of characters, and entered as’a’ or'Thi s is a Stri ng’ .

This covers only the data types that you are most likely to require in this course. Typing help dat atyp es
gives a more complete list.

4 Vectors

The basic data structure in Matlab is a double precision matrix. While it is not obvious from the previous
examples, even scalars have an internal representation as 1 x 1 matrices.

In this section, we will introduce examples of vectors, which are matrices of size 1 x n or n x 1, and talk
about the more general case of m x n matrices in Section 5.

The basic syntax for entering a vector is as a list of values surrounded by square brackets,[] ; for example:
> vl =[ 45 3 -12 ]
vl =
4.5 000 3.00 00 -1.2 000
>> |en gth(v 1)
ans =
3

The variable vl is now a row vector of length 3 (or a matrix with dimensions 1 x 3). In the above
example, spaces were used to separate entries in the vector; another way to enter the same vector is
using a comma-separated list of values: vl = [ 45, 3, -1.2 ].

Column vectors, which have dimension n x 1, can also be entered using a similar syntax, the only differ-
ence being that entries are separated by semi-colons:

>>v2 = [ 4; -5, 2]

V2 =

4

-5

2
>> |en gth(v 2)
ans =

3
>> siz e(vl) , size (v2)
ans =

1 3
ans =

3 1



A Whirlwind Tour of Matlab Page 7/15

Notice how the leng th command returns the length of the row or column vector, while the size com-
mand returns the dimensions of the vectors, interpreted as matrices.

Subscripting vectors: Individual entries within a vector can be accessed or changed using the sub-
scripting operation. In Matlab, the i entry of a vector Vv is represented by the notation v(i ), with the
subscript in parentheses. The second entry of vector v2 can be displayed using

>> v2( 2)
ans =
-5
and then changed via the command
>> v2(2) =5
V2 =
4

5
2

The colon operator: A useful syntax for generating vectors containing regularly-spaced values is the
colon notation, a:b :c , which produces a list of real numbers, starting from a, ending at ¢, and incre-
mented by b. If the middle entry b is omitted, then a spacing of 1 is assumed between numbers. Consider
the following examples:
> 1 4
ans =
1 2 3 4
>1: 01 : 15
ans =
1.00 00 1.1 000 1.20 00 1.3 000 1.40 00 1.5 000
> 10 : -3 @ 1
ans =
10 7 4 1 -2
>z =1:0
Z =
Emgy matrix: 1-by- O
Notice the last example, which assigns the empty matrix to variable z; the same result can be obtained
with the command z = [] (this is a nice way to “unassign” a variable).

Vector operations: Vectors can be added or subtracted from each other, provided they have compatible
dimensions. With vectors vl and v2 defined above, the following command generates an error message
>> vl + v2
??? Error usi ng ==> +
Matr ix dime nsio ns must agr ee.
because one is a row vector, and the other a column vector. However, if we define

> v3 =] 4, -5 2] vl + v3
ans =
8.5 000 -2. 0000 0.8 000

then the vectors are of compatible sizes.



A Whirlwind Tour of Matlab Page 8/15

In order to perform the same sort of element-wise calculations using multiplication, division and expo-
nentiation, Matlab has introduced the operators .* ,./ and.” :

>> vl * v3
ans =

18. 0000 -15. 0000 -2.4 000
>> vl ./ v3
ans =

1.1 250 -0. 6000 -0.6 000

The exponentiation operator can be employed in two ways, with either a vector or a scalar exponent:

> vl © 2, vl [ v3
ans =

20. 2500 9.0 000 1.44 00
ans =

410. 0625 0.0 041 1.44 00

The reason for Matlab needing to define these two “dot”-operators will become clearer later on in Section
5: * actually has the meaning of matrix multiplication, which corresponds to a dot product for vectors.

All of Matlab’s built-in arithmetic functions are also designed to operate on vectors (and matrices) so that
we can construct algebraic expressions that operate on vectors element-wise; for example, the following

code computes 2/ + % — 3 cos (1y), element-wise, for each element in vectors X and y:

> x =123, y=1[1 42]
>> 2 * gogrt X) +x JJ y - x . 3 .* cos(pty )
ans =
2.0 000 -4. 6716 -22. 0359
Notice how scalar operations on vectors are interspersed with element-wise ones in this expression; for

example, 2 * sqrt( X) is well-defined as the product of a scalar with a vector; whereas x/y is not, and
x.ly mustbe used instead.

Note: the element-wise operations for addition and subtraction, .+ and .- , could have been used also,
but are not necessary for this example.

5 Matrices and linear algebra

Matrices are the basic data structure in Matlab, and as mentioned earlier, vectors are just a special type
of matrix having dimension 1 x n (or n x 1).

Typing help elmat and hel p matfu n will give a list of the many matrix commands and functions
available in Matlab.

Defining and initializing matrices: The syntax for defining matrices is very similar to what you've
already seen for vectors. Spaces (or commas) separate elements within a row, and semi-colons indicate
the start of a new row. Consequently, typing

>>A=[2-100 1123 -1 405 ]



A Whirlwind Tour of Matlab Page 9/15

yields the Matlab output

A =
2 -1 0 0
1 1 2 3
-1 4 0 5

so that the variable A now contains a 3 x 4 matrix.

Individual entries within a matrix can be accessed or changed in the same way as for vectors; for exam-
ple, the command A(3,4) = O replaces the -1 in the lower left corner with a zero.

Special matrices: There are several commands that initialize matrices of special type, for example:

e zer os(n, m), for an n X m zero matrix,
e ones(n,m ), for an n x m matrix containing all ones,

e eye(n) , for the n x n identity matrix.

To initialize a square special matrix, you can use the short form zeros (n) which assumes there are the
same number of columns as rows.

Basic matrix operations: The operators +, -, and * implement matrix addition, subtraction and multi-
plication. For example, if we first define the matrices

> A= 02 13; 4-1 ]

> B=[ 11, 00, -1 2]

> C=[101; -2 3-1 ]

then the following commands yield

> A+ B

ans =
1 3
1 3
3 1

and

> A* C

ans =
-4 6 -2
-5 9 -2
6 -3 5

while the following multiplication generates an error because the inner dimensions of matrices Aand B
don’t match

> A* B
??? Error usi hg ==> *
Inne r matri x dimension s must agre e.

Another essential matrix operation is the transpose, which in Matlab is performed using the single



A Whirlwind Tour of Matlab Page 10/15

quote character,
>> D = A
D =
0 1 4
2 3 -1
or D = tra nspose(A) . Notice that now the multiplication D*B is well-defined, since Dis 2 x 3 and B
is3 x 2:

> D * B
ans =
-4 8
3 0

Element-wise matrix operations: Just as with vectors, the element-wise operations .* , ./ and .
also work on matrices. I hope the following examples (using the matrices defined on page 9) are self-
explanatory:

> A * B
ans =
0 2
0 0
-4 -2
> B ./ A
Warning: Divi de by zer o.
ans =
Inf 0.5 000
0 0
-0. 2500 -2.0 000
> B . 2
ans =
1 1
0 0
1 4

Solving linear systems: The command for solving a linear system is extremely simple in Matlab, but
requires a little getting used to. Suppose you have defined a matrix A and right hand side vector b as

follows:
>> A

>> b

2 -1 3, -4 6 -5 6 13 16];

[13; -28; 37];

The the solution to the linear system Az = b (ie, z = A~1p), is found using the matrix left divide
operator, \ :

> X = A\ b

X =
3.000 O
-1. 0000
2.000 O
Another useful command is [L, U] = lu(A) , which performs the LU factorization of the matrix A

and stores the corresponding lower and upper triangular matrices in L and U (see help Ilu for more



A Whirlwind Tour of Matlab Page 11/15

information).

Other useful commands: For square matrices, A, the following commands are extremely helpful:

e inv (A) , the matrix inverse,

e det (A) , the determinant of a matrix,
e tra ce(A) , the trace,

e cond(A) , the condition number,

e nor m(A) , the matrix norm.

e eig (A) , finds the eigenvalues and eigenvectors.

6 Command history and editing

A helpful feature of Matlab’s command line is the ability to recall previous commands. Matlab keeps a
record of your command “history,” and allows you to recall recall these old commands through the use
of the up and down arrow keys on your keyboard (1 and |). This is extremely useful in situations where
you repeat a command several times in succession, or if you make a mistake and need to make a minor
change to what you've just typed.

Hitting the up arrow key will recall the last command you entered, and pressing it more than once will
recall older commands in your session “history.” You can modify previous commands by using the left
and right arrow keys (+- and —) to move to the appropriate spot in the previous command and edit
what you have written.

7 Saving your commands in m-files

Once you move beyond the simplest of Matlab calculations, you will find that you are entering much
longer sequences of commands. When you need to re-enter such a sequence, the “arrow-key” method
of recalling commands is no longer convenient.

Just like most other programming languages, Matlab allows you to store sequences of commands in a
separate file, which you can think of as a Matlab program, that can be executed much more conveniently
by referring to the file instead of typing the individual commands. A Matlab program is stored in a file
with a “.m” extension, and is referred an “m-file.”
For example, suppose you created a file called “myfu nc.m” containing the following three lines (from
the example at the end of Section 4):
x =112 3]
y =[1 42
2 *sgrt X)) +x .J y - x. 3.* cos(pty )
Then instead of typing each individual command as you had to do before, you can simply type the name
of your m-file at the Matlab prompt (omitting the “.m” extension):
>> myfunc
ans =
20000 -4. 6716  -22. 0359

Voila!



A Whirlwind Tour of Matlab Page 12/15

Note on file locations: Matlab needs to know where your m-file is located; in other words, any m-
file you want to execute must be located in your current working directory or path. Therefore, it is
easiest if you save all of your m-files in a single directory, say f: \cs3 113 \matlab \, so that if you begin
every Matlab session with the “cd” command to change to this directory (see the discussion of files and
directories on page 2), then your m-files are always available.

Comments: You will find when you write longer and more complicated pieces of Matlab code, that
comments will become very useful. Comments are delimited by the %(per cent) character: anything
occurring on a line after a %is ignored. For example, in the following sequence of commands, the first
line is a comment that is totally ignored by Matlab, while the part of the second line after the %is ignored.

>> % Defi ne two vect ors

> vl =[] 45, 3, -1.2 ], v3 =] 4, -5 2]

>> vl * v3 % Cal cula te thei r dot produ ct

ans =

18. 0000  -15. 0000  -2.4 000

Helpful Hint: It is always a very good idea to generously comment your assignment submissions so
that the person doing the marking understands clearly what you are doing!!!

8 Loops in Matlab

One thing that should stand out about Matlab code is the relative scarcity of loops. Matlab’s built-in
vector operations minimize the need for such language constructs. For example, compare the following
two pieces of code (the one on the left written in Matlab, and the right in C), that initialize an array of
points, X, and then compute 3 + z2e?:

int i
double x[101], y[101] ;

for( i =0; i <=100; i++ ) {
x=[ 0: 01 : 10 |; i =1 * 0L
y =3 +x . 2.% exp(x) }
for( i =0; i <= 100; i++ ) {
ylil =3+ x[il * x[il * exp(x[l) ;
printf( "%f ", y[il )
}

Notice the following:

e Matlab requires no declarations for variables.
e the colon operator, “: 7, is a very simple way to replace initialization loops.
o the element-wise or “dot” operators (/ and.” ) eliminate the need for the second for loop.

e leaving out the semi-colon at the end of second Matlab assignment statement has the same effect
as the prin tf command in the C code ...not only is Matlab code more compact, but by shortening
your code you can do even more! =



A Whirlwind Tour of Matlab Page 13/15

9 Plotting

There are two ways to generate plots in Matlab: as functions, or as lists of points, and each uses a
different plotting routine.

Plotting functions, with ezplot : The ezpl ot command is a bare-bones plotting routine that takes a
function as an argument. And the simplest way to define a function in Matlab is as a string. For example,
to plot the function f(z) = sin(z)/z, we would use the command:

>> ezplot(  ’'sin (X)/x )
which pops up a separate figure window containing the plot in Figure 1(a). To expand our view of the

plot, we can provide an optional second argument to ezplot , which is a vector of axis limits that can be
specified either as [ xm n, xmax] or[ xm n, Xxmax, ym n, ymax].Forexample,

>> ezplot( ’'sin (X)/x ', [-2 020 -05 15] )
produces the plot in Figure 1(b).

Type help ezpl ot for complete information, and more examples.

sin(x)/x sin(x)/x

-6 -4 -2 0 2 4 6 _0;520 —1‘5 -10 -5 0 5 10 15 20
X X
(a) ezplot  with no axis limits. (b) ezplot with axislimits [-20 20 -0.5 1.5] .

Figure 1: Plots of f(z) = sin(z)/z using ezpl ot .

Plotting lists of points, with plot : Matlab’s do-everything, all-purpose plotting command is plo t,
and we are only going to touch the tip of the iceberg here in terms of what it can do.

plot is designed to plots lists of points. For example, we can define a list of z—values and compute a
corresponding list of y—values for the function f(z) = arctan(sinz) + sin(arctan z):

> x = [ -20 : 0.01 : 20 ],

>> y atan (sin (X)) + sin( atan( Xx));
Notice our judicious use of the colon operator to suppress the output from both commands (each vector
has 4001 elements, which we’d definitely prefer not to see!!!)



A Whirlwind Tour of Matlab Page 14/15

The list of points can then be plotted using the command: plot ( X, y ), with the results displayed in
Figure 2(a). Matlab provides many plotting features that allow the creation of more complicated plots.

My first plot

(a) Plot of f(z) = arctan(sin ) + sin(arctan x). (b) Same plot with grid and axis labels.

My first plot

— )

- -~ arctan(x) | |

(c) Plotting two functions on the same axes.

Figure 2: Example of the plot command.

For example, using the following commands, we can add a grid and labels to the plot:

>> gri d on

>> xla bel( x), ylab el( y)

>> tit le(M vy firs t plot)
with the updated figure being displayed in Figure 2(b) Finally, we can add the plot of a second function
on the same axes, using hol d on to prevent Matlab from clearing the axes before displaying the results



A Whirlwind Tour of Matlab Page 15/15

of the second plot command:
>> hol d on

>> plot( x, atan(x), ' - )
>> |leg end( ’'f(x ), ‘’ar ctan (X), 0)
>> hol d off

The resulting figure is displayed in Figure 2(c).
For more information about Matlab’s plotting capabilities, type help  plot .

Bibliography

[1] Adrian Biran and Moshe Breiner, “MATLAB 5 for Engineers,” 2nd edition, Addison-Wesley, 1999.

[2] Graeme Chandler, “Introduction to MATLAB,” The University of Queensland, 2000 (URL: htt p:
/Iwww .mat hs.u g.edu .au/ “gac/ milb/ mlb. html ).

[3] David E. Griffiths, “An Introduction to MATLAB,” University of Dundee, 1997 (URL: htt p://
www.naths .dun dee.a c.uk /ftp /na- repor ts/M atla bintr o.pd f).

[4] Andrew Knight, “Basics of MATLAB and beyond,” Chapman & Hall, 2000.
[5] The MATLAB home page, The Mathworks (URL: http ://w ww.mathwo rks.c om/).

[6] Gerald Recktenwald, “Numerical Methods with MATLAB: Implementation and Application,”
Prentice-Hall, 2000.

[7] Kermit Sigmon, “MATLAB Primer,” 2nd edition, University of Florida, 1992 (URL: ftp: //ft p.
math. ufl. edu/ pub/matla b/pri mer35.ps ).

[8] Charles F. Van Loan, “Introduction to Scientific Computing: A Matrix-Vector Approach Using MAT-
LAB,” 2nd edition, Prentice-Hall, 2000.



